#include #include #include #include "triton/runtime/jit.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/tools/bench.hpp" #include "triton/dnn/shift.h" // input layout: C, H, W, BS // filter layout: C, K // output layout: K, H, W, BS template void shift_conv(int32_t C, int32_t H, int32_t W, int32_t BS, int32_t K, std::vector& O, const std::vector& I, const std::vector& F, const std::vector shift_h, const std::vector shift_w) { OUT_DTYPE acc; for(int32_t p = 0; p < H; ++p) for(int32_t q = 0; q < W; ++q) for(int32_t bs = 0; bs < BS; ++bs) for(int32_t k = 0; k < K; ++k) { acc = 0; for(int32_t c = 0; c < C; ++c){ int32_t h = p + shift_h[c]; int32_t w = q + shift_w[c]; bool in_bounds = (h >= 0 && w >= 0 && h < H && w < W); IN_DTYPE a = in_bounds?I[bs + w*BS + h*BS*W + c*BS*H*W]:0; IN_DTYPE b = F[k + c*K]; acc = std::fma(a, b, acc); } O[bs + q*BS + p*BS*W + k*BS*H*W] = acc; } } int main() { // initialize default compute device auto context = triton::driver::backend::contexts::get_default(); // initialize just-in-time compiler triton::jit jit(context); // initialization int32_t R = 3, S = 3; int32_t BS = 4, F = 128; int32_t H = 32, W = 32; int32_t C = 128; // random shifts std::vector shift_h(C); std::vector shift_w(C); for(int32_t c = 0; c < C; c++){ shift_h[c] = rand() % R - R/2; shift_w[c] = rand() % S - S/2; } // configuration triton::dnn::shift shift(BS, C, 1, H, W, 1, R, S, F, shift_h, shift_w); // host buffers std::vector hc(shift.c_size()); std::vector rc(shift.c_size()); std::vector ha(shift.a_size()); std::vector hb(shift.b_size()); // device buffers triton::driver::buffer* dc = triton::driver::buffer::create(context, hc.size()*4); triton::driver::buffer* da = triton::driver::buffer::create(context, ha.size()*4); triton::driver::buffer* db = triton::driver::buffer::create(context, hb.size()*4); triton::driver::stream* stream = triton::driver::stream::create(context); // initialize host srand(0); for(size_t i = 0; i < ha.size(); i++) ha[i] = (float)rand() / RAND_MAX; for(size_t i = 0; i < hb.size(); i++) hb[i] = (float)rand() / RAND_MAX; for(size_t i = 0; i < hc.size(); i++) hc[i] = 0; // initialize device stream->write(da, true, 0, ha); stream->write(db, true, 0, hb); stream->write(dc, true, 0, hc); stream->synchronize(); // benchmark auto benchmark = [&](triton::driver::kernel* kernel, triton::jit::launch_information info) { shift.init(stream, (triton::driver::cu_module*)kernel->module()); // launch info unsigned TM = info.global_range_size[0]; unsigned TN = info.global_range_size[1]; unsigned nthreads = info.num_threads; // set argument shift.enqueue(stream, kernel, da, db, dc, TM, TN, nthreads); stream->synchronize(); // benchmark double ts = triton::tools::bench([&](){shift.enqueue(stream, kernel, da, db, dc, TM, TN, nthreads);}, [&](){ stream->synchronize(); }, context->device()); return shift.get_nflops() / ts * 1e-3; }; // shift std::vector params = { 8, 2, 32, 8, 2, 64, 8, 4, 2, 2, 4, 2, 8, 4 }; std::ostringstream oss; shift.src(oss); std::string src = oss.str(); // jit.autotune("shift", src.c_str(), benchmark); jit.add_module("shift", src.c_str(), params); triton::driver::kernel* kernel = jit.get_function("shift"); triton::jit::launch_information info = jit.get_launch_info("shift"); std::cout << "Performance: " << benchmark(kernel, info) << " TFLOPS " << std::endl; stream->read(dc, true, 0, hc); shift.cpu_ref(rc.data(), ha.data(), hb.data()); for(size_t i = 0; i < hc.size(); i++) if(std::abs(hc[i] - rc[i])/std::max(hc[i], rc[i]) > 1e-4){ std::cout << i << " " << hc[i] << " " << rc[i] << std::endl; exit(EXIT_FAILURE); } std::cout << "Pass!" << std::endl; }