#include #include #include "isaac/kernels/templates/reduce_1d.h" #include "isaac/kernels/keywords.h" #include "tools/loop.hpp" #include "tools/reductions.hpp" #include "tools/vector_types.hpp" #include "tools/arguments.hpp" #include namespace isaac { namespace templates { reduce_1d_parameters::reduce_1d_parameters(unsigned int _simd_width, unsigned int _group_size, unsigned int _num_groups, fetching_policy_type _fetching_policy) : base::parameters_type(_simd_width, _group_size, 1, 2), num_groups(_num_groups), fetching_policy(_fetching_policy) { } unsigned int reduce_1d::lmem_usage(expression_tree const & x) const { numeric_type numeric_t= lhs_most(x.tree(), x.root()).lhs.dtype; return p_.local_size_0*size_of(numeric_t); } int reduce_1d::is_invalid_impl(driver::Device const &, expression_tree const &) const { if (p_.fetching_policy==FETCH_FROM_LOCAL) return TEMPLATE_INVALID_FETCHING_POLICY_TYPE; return TEMPLATE_VALID; } unsigned int reduce_1d::temporary_workspace(expression_tree const &) const { if(p_.num_groups > 1) return p_.num_groups; return 0; } inline void reduce_1d::reduce_1d_local_memory(kernel_generation_stream & stream, unsigned int size, std::vector exprs, std::string const & buf_str, std::string const & buf_value_str, driver::backend_type backend) const { stream << "#pragma unroll" << std::endl; stream << "for(unsigned int stride = " << size/2 << "; stride > 0; stride /=2)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); stream << LocalBarrier(backend) << ";" << std::endl; stream << "if (lid < stride)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); for (auto & expr : exprs) if (expr->is_index_reduction()) compute_index_reduce_1d(stream, expr->process(buf_str+"[lid]"), expr->process(buf_str+"[lid+stride]") , expr->process(buf_value_str+"[lid]"), expr->process(buf_value_str+"[lid+stride]"), expr->root_op()); else compute_reduce_1d(stream, expr->process(buf_str+"[lid]"), expr->process(buf_str+"[lid+stride]"), expr->root_op()); stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; } std::string reduce_1d::generate_impl(std::string const & suffix, expression_tree const & expressions, driver::Device const & device, mapping_type const & mapping) const { kernel_generation_stream stream; std::vector exprs; for (mapping_type::const_iterator iit = mapping.begin(); iit != mapping.end(); ++iit) if (mapped_reduce_1d * p = dynamic_cast(iit->second.get())) exprs.push_back(p); std::size_t N = exprs.size(); driver::backend_type backend = device.backend(); std::string _size_t = size_type(device); std::string _global = Global(backend).get(); std::string name[2] = {"prod", "reduce"}; name[0] += suffix; name[1] += suffix; auto unroll_tmp = [&]() { unsigned int offset = 0; for (unsigned int k = 0; k < N; ++k) { numeric_type dtype = lhs_most(exprs[k]->expression_tree().tree(), exprs[k]->expression_tree().root()).lhs.dtype; std::string sdtype = to_string(dtype); if (exprs[k]->is_index_reduction()) { stream << exprs[k]->process(_global + " uint* #name_temp = (" + _global + " uint *)(tmp + " + tools::to_string(offset) + ");"); offset += 4*p_.num_groups; stream << exprs[k]->process(_global + " " + sdtype + "* #name_temp_value = (" + _global + " " + sdtype + "*)(tmp + " + tools::to_string(offset) + ");"); offset += size_of(dtype)*p_.num_groups; } else{ stream << exprs[k]->process( _global + " " + sdtype + "* #name_temp = (" + _global + " " + sdtype + "*)(tmp + " + tools::to_string(offset) + ");"); offset += size_of(dtype)*p_.num_groups; } } }; /* ------------------------ * First Kernel * -----------------------*/ switch(backend) { case driver::CUDA: stream << "#include \"helper_math.h\"" << std::endl; break; case driver::OPENCL: stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << ",1,1)))" << std::endl; break; } stream << KernelPrefix(backend) << " void " << name[0] << "(" << _size_t << " N, " << _global << " char* tmp," << generate_arguments("#scalartype", device, mapping, expressions) << ")" << std::endl; stream << "{" << std::endl; stream.inc_tab(); unroll_tmp(); stream << "unsigned int lid = " <is_index_reduction()) { stream << exprs[k]->process(Local(backend).get() + " #scalartype #name_buf_value[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << exprs[k]->process("#scalartype #name_acc_value = " + neutral_element(exprs[k]->root_op(), backend, "#scalartype") + ";") << std::endl; stream << exprs[k]->process(Local(backend).get() + " unsigned int #name_buf[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << exprs[k]->process("unsigned int #name_acc = 0;") << std::endl; } else { stream << exprs[k]->process(Local(backend).get() + " #scalartype #name_buf[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << exprs[k]->process("#scalartype #name_acc = " + neutral_element(exprs[k]->root_op(), backend, "#scalartype") + ";") << std::endl; } } element_wise_loop_1D(stream, p_.fetching_policy, p_.simd_width, "i", "N", GlobalIdx0(backend).get(), GlobalSize0(backend).get(), device, [&](unsigned int simd_width) { std::string i = (simd_width==1)?"i*#stride":"i"; //Fetch vector entry std::set already_fetched; for (const auto & elem : exprs) { std::string array = append_width("#scalartype",simd_width) + " #namereg = " + vload(simd_width,"#scalartype",i,"#pointer","#stride",backend)+";"; (elem)->process_recursive(stream, PARENT_NODE_TYPE, {{"arrayn", array}, {"arrayn1", array}, {"array1n", array}, {"matrix_row", "#scalartype #namereg = #pointer[$OFFSET{#row*#stride, i}];"}, {"matrix_column", "#scalartype #namereg = #pointer[$OFFSET{i*#stride,#column}];"}, {"matrix_diag", "#scalartype #namereg = #pointer[#diag_offset<0?$OFFSET{(i - #diag_offset)*#stride, i}:$OFFSET{i*#stride, (i + #diag_offset)}];"}}, already_fetched); } //Update accumulators std::vector str(simd_width); if (simd_width==1) str[0] = "#namereg"; else for (unsigned int a = 0; a < simd_width; ++a) str[a] = access_vector_type("#namereg", a); for (auto & elem : exprs) { for (unsigned int a = 0; a < simd_width; ++a) { std::map accessors; accessors["arrayn"] = str[a]; accessors["array1n"] = str[a]; accessors["arrayn1"] = str[a]; accessors["matrix_row"] = str[a]; accessors["matrix_column"] = str[a]; accessors["matrix_diag"] = str[a]; accessors["array1"] = "#namereg"; std::string value = elem->evaluate_recursive(LHS_NODE_TYPE, accessors); if (elem->is_index_reduction()) compute_index_reduce_1d(stream, elem->process("#name_acc"), "i*" + tools::to_string(simd_width) + "+" + tools::to_string(a), elem->process("#name_acc_value"), value,elem->root_op()); else compute_reduce_1d(stream, elem->process("#name_acc"), value,elem->root_op()); } } }); //Fills local memory for (unsigned int k = 0; k < N; ++k) { if (exprs[k]->is_index_reduction()) stream << exprs[k]->process("#name_buf_value[lid] = #name_acc_value;") << std::endl; stream << exprs[k]->process("#name_buf[lid] = #name_acc;") << std::endl; } //Reduce local memory reduce_1d_local_memory(stream, p_.local_size_0, exprs, "#name_buf", "#name_buf_value", backend); //Write to temporary buffers stream << "if (lid==0)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); for (unsigned int k = 0; k < N; ++k) { if (exprs[k]->is_index_reduction()) stream << exprs[k]->process("#name_temp_value[gpid] = #name_buf_value[0];") << std::endl; stream << exprs[k]->process("#name_temp[gpid] = #name_buf[0];") << std::endl; } stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; /* ------------------------ * Second kernel * -----------------------*/ stream << KernelPrefix(backend) << " void " << name[1] << "(" << _size_t << " N, " << _global << " char* tmp, " << generate_arguments("#scalartype", device, mapping, expressions) << ")" << std::endl; stream << "{" << std::endl; stream.inc_tab(); unroll_tmp(); stream << "unsigned int lid = " <is_index_reduction()) { stream << e->process(Local(backend).get() + " unsigned int #name_buf[" + tools::to_string(p_.local_size_0) + "];"); stream << e->process("unsigned int #name_acc = 0;") << std::endl; stream << e->process(Local(backend).get() + " #scalartype #name_buf_value[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << e->process("#scalartype #name_acc_value = " + neutral_element(e->root_op(), backend, "#scalartype") + ";"); } else { stream << e->process(Local(backend).get() + " #scalartype #name_buf[" + tools::to_string(p_.local_size_0) + "];") << std::endl; stream << e->process("#scalartype #name_acc = " + neutral_element(e->root_op(), backend, "#scalartype") + ";"); } } stream << "for(unsigned int i = lid; i < " << p_.num_groups << "; i += lsize)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); for (mapped_reduce_1d* e: exprs) if (e->is_index_reduction()) compute_index_reduce_1d(stream, e->process("#name_acc"), e->process("#name_temp[i]"), e->process("#name_acc_value"),e->process("#name_temp_value[i]"),e->root_op()); else compute_reduce_1d(stream, e->process("#name_acc"), e->process("#name_temp[i]"), e->root_op()); stream.dec_tab(); stream << "}" << std::endl; for (unsigned int k = 0; k < N; ++k) { if (exprs[k]->is_index_reduction()) stream << exprs[k]->process("#name_buf_value[lid] = #name_acc_value;") << std::endl; stream << exprs[k]->process("#name_buf[lid] = #name_acc;") << std::endl; } //Reduce and write final result reduce_1d_local_memory(stream, p_.local_size_0, exprs, "#name_buf", "#name_buf_value", backend); stream << "if (lid==0)" << std::endl; stream << "{" << std::endl; stream.inc_tab(); std::map accessors; accessors["scalar_reduce_1d"] = "#name_buf[0]"; accessors["array1"] = "#pointer[#start]"; accessors["array11"] = "#pointer[#start]"; stream << evaluate(PARENT_NODE_TYPE, accessors, expressions, expressions.root(), mapping) << ";" << std::endl; stream.dec_tab(); stream << "}" << std::endl; stream.dec_tab(); stream << "}" << std::endl; return stream.str(); } reduce_1d::reduce_1d(reduce_1d::parameters_type const & parameters, binding_policy_t binding) : base_impl(parameters, binding) { } reduce_1d::reduce_1d(unsigned int simd, unsigned int ls, unsigned int ng, fetching_policy_type fetch, binding_policy_t bind): base_impl(reduce_1d_parameters(simd,ls,ng,fetch), bind) {} std::vector reduce_1d::input_sizes(expression_tree const & x) const { std::vector reduce_1ds_idx = filter_nodes(&is_reduce_1d, x, x.root(), false); int_t N = vector_size(lhs_most(x.tree(), reduce_1ds_idx[0])); return {N}; } void reduce_1d::enqueue(driver::CommandQueue & queue, driver::Program const & program, std::string const & suffix, base & fallback, execution_handler const & control) { expression_tree const & x = control.x(); //Preprocessing int_t size = input_sizes(x)[0]; //fallback if(p_.simd_width > 1 && (requires_fallback(x) || (size%p_.simd_width>0))) { fallback.enqueue(queue, program, "fallback", fallback, control); return; } std::vector reduce_1ds; std::vector reduce_1ds_idx = filter_nodes(&is_reduce_1d, x, x.root(), false); for (size_t idx: reduce_1ds_idx) reduce_1ds.push_back(&x.tree()[idx]); //Kernel std::string name[2] = {"prod", "reduce"}; name[0] += suffix; name[1] += suffix; driver::Kernel kernels[2] = { driver::Kernel(program,name[0].c_str()), driver::Kernel(program,name[1].c_str()) }; //NDRange driver::NDRange global[2] = { driver::NDRange(p_.local_size_0*p_.num_groups), driver::NDRange(p_.local_size_0) }; driver::NDRange local[2] = { driver::NDRange(p_.local_size_0), driver::NDRange(p_.local_size_0) }; //Arguments for (auto & kernel : kernels) { unsigned int n_arg = 0; kernel.setSizeArg(n_arg++, size); kernel.setArg(n_arg++, driver::backend::workspaces::get(queue)); set_arguments(x, kernel, n_arg, binding_policy_); } for (unsigned int k = 0; k < 2; k++) control.execution_options().enqueue(program.context(), kernels[k], global[k], local[k]); queue.synchronize(); } } }