#include "triton/codegen/tune.h" #include "triton/codegen/shared_copy.h" #include "triton/ir/instructions.h" #include "triton/ir/type.h" #include "triton/ir/module.h" #include "triton/ir/function.h" #include "triton/ir/context_impl.h" #include "triton/ir/constant.h" #include namespace triton{ namespace codegen{ tune::tune(): num_global_ranges_(0){ } void tune::add_constraint(node_t x, node_t y) { dependencies_[x].insert(y); dependencies_[y].insert(x); nodes_.insert(x); nodes_.insert(y); } void tune::init_c_phi(ir::instruction *v) { // Phi Nodes: all the incoming value share the result layout if(auto *phi = dynamic_cast(v)) for(ir::value *op: phi->ops()) for(unsigned k = 0; k < phi->get_type()->get_tile_shapes().size(); k++) if(dependencies_.find({op, k}) != dependencies_.end() || dependencies_.find({phi, k}) != dependencies_.end()){ add_constraint({phi, k}, {op, k}); } } void tune::init_c_graph(ir::instruction *v) { // Reference shape ir::type::tile_shapes_t::value_type one = ir::tile_type::make_one(v->get_parent()->get_context()); ir::type::tile_shapes_t shapes; if(auto *store = dynamic_cast(v)) shapes = store->get_pointer_operand()->get_type()->get_tile_shapes(); else shapes = v->get_type()->get_tile_shapes(); // Reshape if(dynamic_cast(v)){ ir::value *op = v->get_operand(0); unsigned current = 0; for(unsigned i = 0; i < shapes.size(); i ++){ if(shapes[i] == one) static_params_.insert({{v, i}, 1}); else add_constraint({v, i}, {op, current++}); } } // Splat else if(dynamic_cast(v)){ } // Broadcast else if(dynamic_cast(v)){ ir::value *op = v->get_operand(0); ir::type *op_ty = op->get_type(); const auto& op_shapes = op_ty->get_tile_shapes(); for(unsigned i = 0; i < shapes.size(); i ++){ if(op_shapes[i] == shapes[i] && v != op) add_constraint({v, i}, {op, i}); } } // Matrix multiplication else if(dynamic_cast(v)){ ir::value *D = v->get_operand(2); add_constraint({v, 0}, {D, 0}); add_constraint({v, 1}, {D, 1}); } // Element-wise else if(dynamic_cast(v)){ for(unsigned k = 0; k < v->get_num_results(); k++) for(unsigned i = 0; i < shapes.size(); i ++) for(ir::value* op: v->ops()) add_constraint({v->get_result(k), i}, {op, i}); } } void tune::connected_components(node_t x, const std::vector mps, std::set &nodes, graph_t &graph) { if(nodes.find(x) != nodes.end()){ nodes.erase(x); std::string suffix = ".d" + std::to_string(x.second); params_[x.first].insert({"nts" + suffix, mps[0]}); params_[x.first].insert({"mts" + suffix, mps[1]}); ir::type *ty = x.first->get_type(); if(ty->is_tile_ty()){ ir::type::tile_shapes_t::value_type shape = ty->get_tile_shapes().at(x.second); if(auto mp = dynamic_cast(shape)) params_[x.first].insert({"shape" + suffix, mp}); } if(auto range = dynamic_cast(x.first)){ unsigned ax = range->get_axis(); global_range_sizes_[ax] = params_[x.first].at("shape.d0"); num_global_ranges_ = std::max(num_global_ranges_, ax + 1); } if(static_params_.find(x) != static_params_.end()){ mps[0]->set_value(static_params_.at(x)); mps[1]->set_value(static_params_.at(x)); } for(const node_t &y: graph[x]) connected_components(y, mps, nodes, graph); } } std::vector tune::get_params(ir::module &mod) { std::vector result; std::set seen; for(ir::function *fn: mod.get_function_list()) for(ir::basic_block *block: fn->blocks()) for(ir::instruction *i : block->get_inst_list()) for(auto &x: params_[i]) if(seen.insert(x.second).second && !x.second->has_value()){ result.push_back(x.second); } return result; } std::map tune::get_params(ir::instruction* i) { return params_.at(i); } void tune::run(ir::module &mod) { ir::context &ctx = mod.get_context(); // Create metaparameters for(ir::function *fn: mod.get_function_list()){ // Build constraints graph for(ir::basic_block *block: fn->blocks()) for(ir::instruction *i : block->get_inst_list()) if(i->has_tile_result_or_op()){ init_c_graph(i); } // Build phi constraints for(ir::basic_block *block: fn->blocks()) for(ir::instruction *i : block->get_inst_list()) if(i->has_tile_result_or_op()) init_c_phi(i); // Layout parameters while(!nodes_.empty()){ ir::type *ty = mod.get_builder().get_int32_ty(); ir::metaparameter *nts = ir::metaparameter::create(ctx, ty, 1, 2); ir::metaparameter *mts = ir::metaparameter::create(ctx, ty, 4, 32); connected_components(*nodes_.begin(), {nts, mts}, nodes_, dependencies_); } } } void tune::init(ir::module &mod) { for(ir::function *fn: mod.get_function_list()){ // initialize grids std::map references; create_grids(grids_, references, fn); } // number of threads num_threads_ = 1; ir::instruction *first = grids_.front(); for(unsigned k = 0; k < first->get_type()->get_tile_shapes().size(); k++){ std::string suffix = ".d" + std::to_string(k); num_threads_ *= params_.at(first).at("mts" + suffix)->get_value(); } } void tune::create_grids(std::vector &grids, std::map &references, ir::function *fn) { // get number of dimensions greater than 1 auto get_tile_gt1_dim = [&](ir::value *v){ unsigned result = 0; auto one = ir::tile_type::make_one(fn->get_fn_type()->get_context()); for(ir::constant_int *shape: v->get_type()->get_tile_shapes()) { result += (shape != one); } return result; }; // bind references for(ir::basic_block *block: fn->blocks()) for(ir::instruction *i: block->get_inst_list()){ if(!i->get_type()->is_tile_ty()) continue; for(auto ¶m: params_.at(i)){ if(param.second->get_value() == 1) continue; ir::instruction *&r = references[param.second]; if(!r || get_tile_gt1_dim(i) > get_tile_gt1_dim(r)) r = i; } } // create grid for(auto &ref: references) if(std::find(grids.begin(), grids.end(), ref.second) == grids.end()) grids.push_back(ref.second); } bool tune::check_constraints(std::map> &errors) { using std::to_string; auto get_num_warps = [&](ir::instruction *i, unsigned axis) { std::string strk = to_string(axis); unsigned mts = params_[i]["mts.d" + strk]->get_value(); unsigned nts = params_[i]["nts.d" + strk]->get_value(); unsigned shape = i->get_type()->get_tile_shapes()[axis]->get_value(); return shape / (mts * nts); }; // number of warps ir::instruction *first = grids_.front(); int num_warps = 1; for(size_t k = 0; k < first->get_type()->get_tile_shapes().size(); k++) num_warps *= get_num_warps(first, k); // check constraints for(ir::instruction *i: grids_){ ir::type *ty = i->get_type(); const auto &shapes = ty->get_tile_shapes(); // for each dimension, the product of layout components // must device the shape for(size_t k = 0; k < shapes.size(); k++) { std::string strk = to_string(k); ir::metaparameter *mts = params_[i]["mts.d" + strk]; ir::metaparameter *nts = params_[i]["nts.d" + strk]; unsigned multiple = mts->get_value()*nts->get_value(); if(shapes[k]->get_value() % multiple != 0) errors[i].push_back("for dim " + strk + ": shape (" + to_string(shapes[k]->get_value()) + ")" " is not a multiple of layout (" + to_string(multiple) + ")"); } // the number of thread per warp must be 32 int num_threads = 1; for(size_t k = 0; k < shapes.size(); k++) num_threads *= params_[i]["mts.d" + to_string(k)]->get_value(); if(num_threads % 32 != 0) errors[i].push_back("number of threads per block (" + to_string(num_threads) + ") must be multiple of 32"); if(num_threads != num_threads_) errors[i].push_back("Number of threads must be the same for all tiles (" + to_string(num_threads_) + ")"); } return errors.empty(); } unsigned tune::get_num_global_range() { return num_global_ranges_; } unsigned tune::get_global_range_size(unsigned axis) { return global_range_sizes_.at(axis)->get_value(); } unsigned tune::get_num_threads() { return num_threads_; } } }