#include "triton/codegen/pass.h" #include "triton/codegen/target.h" #include "triton/codegen/extern_lib.h" #include "triton/driver/error.h" #include "triton/driver/llvm.h" #include "triton/ir/builder.h" #include "triton/ir/enums.h" #include "triton/ir/function.h" #include "triton/ir/module.h" #include "triton/ir/print.h" #include #include #include #include #include #include #include "Python.h" #include #include #include #include #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" namespace py = pybind11; namespace ir = triton::ir; namespace drv = triton::driver; /*****************************************************************************/ /* Python bindings for triton::driver */ /*****************************************************************************/ // information query template int cuGetInfo(CUdevice device) { int res; drv::dispatch::cuDeviceGetAttribute(&res, attr, device); return res; } template int hipGetInfo(hipDevice_t device) { int res; drv::dispatch::hipDeviceGetAttribute(&res, attr, device); return res; } enum backend_t { HOST, CUDA, ROCM, }; void cu_enable_peer_access(uint64_t peer_ptr){ CUcontext context; drv::dispatch::cuPointerGetAttribute(&context, CU_POINTER_ATTRIBUTE_CONTEXT, peer_ptr); try { drv::dispatch::cuCtxEnablePeerAccess(context, 0); } catch (drv::exception::cuda::peer_access_already_enabled) {} } void host_enqueue(uint64_t stream, uint64_t kernel, uint64_t grid_0, uint64_t grid_1, uint64_t grid_2, uint64_t block_0, uint64_t block_1, uint64_t block_2, void* args_ptr, size_t args_size, int64_t shared_mem){ throw std::runtime_error("unsupported"); // auto hst = kernel->module()->hst(); // hst_->futures->reserve(hst_->futures->size() + grid[0]*grid[1]*grid[2]); // char* params = new char[args_size]; // std::memcpy((void*)params, (void*)args, args_size); // for(size_t i = 0; i < grid[0]; i++) // for(size_t j = 0; j < grid[1]; j++) // for(size_t k = 0; k < grid[2]; k++) // hst_->futures->emplace_back(hst_->pool->enqueue(hst->fn, (char**)params, int32_t(i), int32_t(j), int32_t(k))); } void cu_enqueue(uint64_t stream, uint64_t kernel, uint64_t grid_0, uint64_t grid_1, uint64_t grid_2, uint64_t block_0, uint64_t block_1, uint64_t block_2, void* args_ptr, size_t args_size, int64_t shared_mem){ void *config[] = { CU_LAUNCH_PARAM_BUFFER_POINTER, (void*)args_ptr, CU_LAUNCH_PARAM_BUFFER_SIZE, &args_size, CU_LAUNCH_PARAM_END }; drv::dispatch::cuLaunchKernel((CUfunction)kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, shared_mem, (CUstream)stream, nullptr, config); } void hip_enqueue(uint64_t stream, uint64_t kernel, uint64_t grid_0, uint64_t grid_1, uint64_t grid_2, uint64_t block_0, uint64_t block_1, uint64_t block_2, void* args_ptr, size_t args_size, int64_t shared_mem) { void *config[] = { HIP_LAUNCH_PARAM_BUFFER_POINTER, (void*)args_ptr, HIP_LAUNCH_PARAM_BUFFER_SIZE, &args_size, HIP_LAUNCH_PARAM_END }; drv::dispatch::hipModuleLaunchKernel((hipFunction_t)kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, shared_mem, (hipStream_t)stream, nullptr, config); #ifdef DEBUG_ROCM drv::dispatch::hipGetLastError(); #endif } long pow2_divisor(long N){ if(N % 16 == 0) return 16; if(N % 8 == 0) return 8; if(N % 4 == 0) return 4; if(N % 2 == 0) return 2; return 1; } // Returns something like "int16", whether dtype is a torch.dtype or // triton.language.dtype. std::string dtype_cache_key_part(const py::object& dtype) { if (py::hasattr(dtype, "cache_key_part")) { // Presumed to be a triton.language.dtype. return std::string(py::str(py::getattr(dtype, "cache_key_part"))); } else { // Remove 'torch.' prefix from repr of torch.dtype. py::object repr = py::repr(dtype); size_t repr_len = PyUnicode_GET_LENGTH(repr.ptr()); const char* repr_ptr = (const char*)PyUnicode_1BYTE_DATA(repr.ptr()); if (repr_len <= 6 || strncmp(repr_ptr, "torch.", 6)) { throw std::logic_error("invalid dtype: " + std::string(repr_ptr, repr_len)); } return std::string(repr_ptr + 6, repr_len - 6); } } size_t get_pointer_range_size(uint64_t addr){ if(addr == 0) return 0; size_t size; drv::dispatch::cuPointerGetAttribute(&size, CU_POINTER_ATTRIBUTE_RANGE_SIZE, (CUdeviceptr)addr); return size; } // Launch void parse_args(py::list& args, py::list do_not_specialize, const std::string& func_key, py::list& arg_names, std::string& cache_key, std::string& params, size_t& params_size, py::dict constants, int num_warps, int num_stages, py::dict& extern_libs) { size_t len = PyList_Size(args.ptr()); params.reserve(8*len); // 8 max bytes by argument char* params_ptr = ¶ms[0]; cache_key = func_key; cache_key += "-" + std::to_string(num_warps); cache_key += "-" + std::to_string(num_stages); cache_key += "-"; for(int i = 0; i < len; i++){ cache_key += "_"; py::int_ py_i = py::int_(i); bool specialize = !do_not_specialize.contains(py_i); py::object arg = args[i]; auto arg_ptr = arg.ptr(); // argument is `long` if(PyLong_Check(arg_ptr)){ int overflow; long long value = PyLong_AsLongLongAndOverflow(arg_ptr, &overflow); // values equal to 1 are specialized if(specialize && (value == 1)){ cache_key += "1"; continue; } // int32, uint32, int64, and uint64 have different kernels if (!overflow && -0x8000'0000LL <= value && value <= 0x7FFF'FFFFLL) { cache_key += "int32"; params_ptr = (char*)(((uintptr_t)params_ptr + 3) & (-4)); std::memcpy(params_ptr, &value, 4); params_ptr += 4; } else if (!overflow && 0x8000'0000LL <= value && value <= 0xFFFF'FFFFLL) { cache_key += "uint32"; params_ptr = (char*)(((uintptr_t)params_ptr + 3) & (-4)); std::memcpy(params_ptr, &value, 4); params_ptr += 4; } else if (!overflow) { cache_key += "int64"; params_ptr = (char*)(((uintptr_t)params_ptr + 7) & (-8)); std::memcpy(params_ptr, &value, 8); params_ptr += 8; } else { if (PyErr_Occurred()) { throw std::logic_error("An error occurred?"); } unsigned long long unsigned_value = PyLong_AsUnsignedLongLong(arg_ptr); if (PyErr_Occurred()) { throw std::runtime_error("integer overflow in argument: " + std::string(py::str(arg))); } cache_key += "uint64"; params_ptr = (char*)(((uintptr_t)params_ptr + 7) & (-8)); std::memcpy(params_ptr, &unsigned_value, 8); params_ptr += 8; } if(!specialize) continue; // values divisible by small powers of 2 are specialized cache_key += "[multipleof("; cache_key += std::to_string(pow2_divisor(value)); cache_key += ")]"; continue; } // argument is `float` if(PyFloat_Check(arg_ptr)){ cache_key += "float32"; float value = PyFloat_AsDouble(arg_ptr); params_ptr = (char*)(((uintptr_t)params_ptr + 3) & (-4)); std::memcpy(params_ptr, &value, 4); params_ptr += 4; continue; } // argument is `bool` if(PyBool_Check(arg_ptr)){ cache_key += "bool"; bool value = arg_ptr == Py_True ? true : false; std::memcpy(params_ptr, &value, 1); params_ptr += 1; continue; } // argument is tensor if(py::hasattr(arg, "data_ptr")){ py::object data_ptr = arg.attr("data_ptr")(); long value = data_ptr.cast(); params_ptr = (char*)(((uintptr_t)params_ptr + 7) & (-8)); // copy param std::memcpy(params_ptr, &value, 8); params_ptr += 8; // update cache key cache_key += dtype_cache_key_part(arg.attr("dtype")); cache_key += "*"; cache_key += "[multipleof("; size_t range_size; try { range_size = get_pointer_range_size(value); } catch (...) { throw std::runtime_error("argument tensor #" + std::to_string(i) + " is not on cuda! " + std::string(py::str(arg))); } cache_key += std::to_string(std::min(pow2_divisor(value), pow2_divisor(range_size))); cache_key += ")]"; continue; } // argument is `constexpr` if (py::hasattr(arg, "value")) { py::object value = arg.attr("value"); // check if value is a callable object using PyCallable_Check if (PyCallable_Check(value.ptr())) { throw std::runtime_error( "constant argument cannot be a callable object: " + std::string(py::str(arg))); } py::object name = arg_names[i]; constants[name] = value; py::object repr = py::repr(value); const char* start = (const char*)PyUnicode_1BYTE_DATA(repr.ptr()); size_t len = PyUnicode_GET_LENGTH(repr.ptr()); cache_key += std::string(start, len); continue; } std::string ty_str = arg.attr("__class__").attr("__name__").cast(); if(ty_str == "NoneType"){ cache_key += "None"; continue; } std::string err_msg = "Received type '" + ty_str + "' for argument " + std::to_string(i) + "." + " Only int, float, bool, torch.Tensor, and triton.language.constexpr are supported."; throw std::runtime_error(err_msg); } params_size = (std::ptrdiff_t)(params_ptr - ¶ms[0]); for (auto item : extern_libs) { cache_key += "-" + item.first.cast(); cache_key += "_" + item.second.cast(); } } // void init_triton_runtime(py::module &&m) { // m.def("current_stream", [](uint64_t device){ // return (uint64_t)(c10::cuda::getCurrentCUDAStream(device).stream()); // }); // wrap backend_t py::enum_(m, "backend") .value("HOST", HOST) .value("CUDA", CUDA) .value("ROCM", ROCM) .export_values(); // enable peer-to-peer m.def("enable_peer_access", [](backend_t backend, uint64_t peer_ptr) { if (backend != CUDA) throw std::runtime_error("P2P only supported on CUDA devices!"); cu_enable_peer_access(peer_ptr); } ); // get range size for the given pointer m.def("get_pointer_range_size", &get_pointer_range_size); // cache key m.def("launch", [](py::list args, py::list do_not_specialize, const std::string& func_key, py::list& arg_names, py::object device, py::int_ stream, py::dict bin_cache, py::int_ num_warps, py::int_ num_stages, py::dict extern_libs, py::function add_to_cache, py::object grid){ // parse arguments to compute cache key, compile-time constants and packed kernel arguments long _num_warps = PyLong_AsLong(num_warps.ptr()); long _num_stages = PyLong_AsLong(num_stages.ptr()); std::string cache_key; std::string params; size_t params_size; py::dict constants; parse_args(args, do_not_specialize, func_key, arg_names, cache_key, params, params_size, constants, _num_warps, _num_stages, extern_libs); // get cached binary py::str key(cache_key); py::bool_ noop = false; if(!bin_cache.contains(key)) { noop = add_to_cache(key, args, device, num_warps, num_stages, extern_libs); } if (noop) return (py::object)py::none(); py::object bin = bin_cache[key]; // get grid py::sequence seq; if(!PySequence_Check(grid.ptr())) seq = grid(constants); else seq = grid; int size = seq.size(); int grid_0 = py::cast(seq[0]); int grid_1 = size < 2 ? 1 : py::cast(seq[1]); int grid_2 = size < 3 ? 1 : py::cast(seq[2]); // enqueue uint64_t kernel = py::cast(bin.attr("kernel")); uint64_t shared_mem = py::cast(bin.attr("shared_mem")); // actually launch void *config[] = { CU_LAUNCH_PARAM_BUFFER_POINTER, params.data(), CU_LAUNCH_PARAM_BUFFER_SIZE, ¶ms_size, CU_LAUNCH_PARAM_END }; uint64_t _stream = PyLong_AsLong(stream.ptr()); if(grid_0*grid_1*grid_2 > 0) { // release the gil in case the enqueue blocks // cuda will block if too many ops are enqueued py::gil_scoped_release allow_threads; drv::dispatch::cuLaunchKernel((CUfunction)kernel, grid_0, grid_1, grid_2, _num_warps*32, 1, 1, shared_mem, (CUstream)_stream, nullptr, config); } return bin; }); m.def("cc", [](backend_t backend, uint64_t device) -> int { if (backend == CUDA) { CUdevice dev = (CUdevice)device; int major = cuGetInfo(dev); int minor = cuGetInfo(dev); return major*10 + minor; } return -1; }); // query maximum shared memory m.def("max_shared_memory", [](backend_t backend, uint64_t device) { if (backend == HOST) return 0; if(backend == CUDA) return cuGetInfo(device); if(backend == ROCM) return hipGetInfo(device); return -1; }); // query DRAM & L2 cache m.def("memory_clock_rate", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); m.def("global_memory_bus_width", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); m.def("l2_cache_size", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); // query clock rate (in kilohertz) m.def("clock_rate", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); m.def("num_sm", [](backend_t backend, uint64_t device) { if (backend == CUDA) return cuGetInfo(device); return -1; }); // enqueue m.def("enqueue", [](backend_t backend, uint64_t stream, uint64_t kernel, uint64_t grid_0, uint64_t grid_1, uint64_t grid_2, uint64_t block_0, uint64_t block_1, uint64_t block_2, const std::string &args, int64_t shared_mem){ void* args_ptr = (void*)args.data(); size_t args_size = args.size(); // release the gil in case the enqueue blocks // cuda will block if too many ops are enqueued py::gil_scoped_release allow_threads; if(backend == HOST) host_enqueue(stream, kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, args_ptr, args_size, shared_mem); if(backend == CUDA) cu_enqueue(stream, kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, args_ptr, args_size, shared_mem); if(backend == ROCM) hip_enqueue(stream, kernel, grid_0, grid_1, grid_2, block_0, block_1, block_2, args_ptr, args_size, shared_mem); }); } /*****************************************************************************/ /* Python bindings for triton::codegen */ /*****************************************************************************/ typedef std::map asm_map_t; // --------------------------------------- // Compile Triton-IR to assembly // --------------------------------------- void init_triton_codegen(py::module &&m) { m.def("compile_ttir_to_ptx", [](backend_t backend, ir::module &ir, uint64_t device, int num_warps, int num_stages, py::dict& extern_libs, size_t cc) { std::ostringstream ttir; int n_shared_bytes; std::string tmp; std::string ptx; std::string cubin; std::string name; { // Scope where the GIL is released py::gil_scoped_release allow_threads; name = ir.get_function_list()[0]->get_name(); ir.print(ttir); llvm::LLVMContext ctx; // construct extern lib map triton::codegen::ExternLibMap extern_lib_map; for (auto item : extern_libs) { auto name = item.first.cast(); auto path = item.second.cast(); extern_lib_map.emplace( name, triton::codegen::create_extern_lib(name, path)); } // device properties if (cc == 0) { CUdevice dev = (CUdevice)device; size_t major = cuGetInfo(dev); size_t minor = cuGetInfo(dev); cc = major*10 + minor; } int version; std::string ptxas_path = drv::path_to_ptxas(version); // Triton-IR -> NVPTX LLVM-IR triton::codegen::nvidia_cu_target target(cc); auto llvm = triton::codegen::add_passes_to_emit_bin( ir, ctx, &target, num_warps, num_stages, n_shared_bytes, extern_lib_map); llvm::raw_string_ostream llir(tmp); llir << *llvm; llir.flush(); // LLVM-IR -> PTX ptx = drv::llir_to_ptx(llvm.get(), cc, version); // PTX -> Binary cubin = drv::ptx_to_cubin(ptx, ptxas_path, cc); } asm_map_t asm_map; asm_map["ttir"] = py::cast(ttir.str()); asm_map["llir"] = py::cast(tmp); asm_map["ptx"] = py::cast(ptx); if(!cubin.empty()){ py::bytes bytes(cubin); asm_map["cubin"] = bytes; } return std::make_tuple(name, asm_map, n_shared_bytes); }, py::return_value_policy::take_ownership); m.def("compile_ttir_to_amdgpu", [](backend_t backend, ir::module &ir, uint64_t device, int num_warps, int num_stages, py::dict& extern_libs, size_t cc) { std::ostringstream ttir; int n_shared_bytes; std::string tmp; std::string amdgpu; std::string hipmodule; std::string name; { std::cout << "triton.cc: compile_ttir_to_amdgpu:" << std::endl; // Scope where the GIL is released py::gil_scoped_release allow_threads; name = ir.get_function_list()[0]->get_name(); ir.print(ttir); llvm::LLVMContext ctx; // construct extern lib map triton::codegen::ExternLibMap extern_lib_map; for (auto item : extern_libs) { auto name = item.first.cast(); auto path = item.second.cast(); extern_lib_map.emplace( name, triton::codegen::create_extern_lib(name, path)); } // device properties if (cc == 0) { hipDevice_t dev = (hipDevice_t)device; size_t major = hipGetInfo(dev); size_t minor = hipGetInfo(dev); cc = major*10 + minor; } int version; // std::string ptxas_path = drv::path_to_ptxas(version); // Triton-IR -> AMDGCN LLVM-IR std::cout << "\t" << ttir.str() << std::endl; std::cout << "\t" << tmp << std::endl; triton::codegen::amd_cl_target target; auto llvm = triton::codegen::add_passes_to_emit_bin( ir, ctx, &target, num_warps, num_stages, n_shared_bytes, extern_lib_map); llvm::raw_string_ostream llir(tmp); llir << *llvm; llir.flush(); // LLVM-IR -> AMDGPU std::string amdgpu = drv::llir_to_amdgpu(llvm.get(), "gfx90a"); std::cout << "amdgpu = " << amdgpu << std::endl; // AMDGPU -> Binary hipModule_t hipmodule = drv::amdgpu_to_hipmodule(amdgpu); std::cout << "hipmodule = " << hipmodule << std::endl; } asm_map_t asm_map; asm_map["ttir"] = py::cast(ttir.str()); asm_map["llir"] = py::cast(tmp); asm_map["amdgpu"] = py::cast(amdgpu); asm_map["hipmodule"] = py::bytes(hipmodule); return std::make_tuple(name, asm_map, n_shared_bytes); }, py::return_value_policy::take_ownership); // --------------------------------------- // Load provided assembly code into driver // --------------------------------------- m.def("load_binary_cubin", [](const std::string& name, const std::string& data, size_t n_shared_bytes, uint64_t device){ py::gil_scoped_release allow_threads; // create driver handles CUfunction fun; CUmodule mod; drv::dispatch::cuModuleLoadData(&mod, data.c_str()); drv::dispatch::cuModuleGetFunction(&fun, mod, name.c_str()); // get allocated registers and spilled registers from the function int n_regs = 0; int n_spills = 0; drv::dispatch::cuFuncGetAttribute(&n_regs, CU_FUNC_ATTRIBUTE_NUM_REGS, fun); drv::dispatch::cuFuncGetAttribute(&n_spills, CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES, fun); n_spills /= 4; // set dynamic shared memory if necessary int shared_optin; drv::dispatch::cuDeviceGetAttribute(&shared_optin, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN, device); if(n_shared_bytes > 49152 && shared_optin > 49152){ drv::dispatch::cuFuncSetCacheConfig(fun, CU_FUNC_CACHE_PREFER_SHARED); int shared_total, shared_static; drv::dispatch::cuDeviceGetAttribute(&shared_total, CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR, device); drv::dispatch::cuFuncGetAttribute(&shared_static, CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES, fun); drv::dispatch::cuFuncSetAttribute(fun, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, shared_optin - shared_static); } return std::make_tuple((uint64_t)mod, (uint64_t)fun, (uint64_t)n_regs, (uint64_t)n_spills); }, py::return_value_policy::take_ownership ); // --------------------------------------- // Load provided assembly code into driver // --------------------------------------- m.def("load_binary_hipmodule", [](const std::string& name, const std::string& data, size_t n_shared_bytes, uint64_t device){ std::cout << "triton.cc: load_binary_hipmodule:" << std::endl; std::cout << "\tname:" << name << std::endl; std::cout << "\tdata:" << data << std::endl; std::cout << "\tn_shared_bytes:" << n_shared_bytes << std::endl; std::cout << "\tdevice:" << device << std::endl; py::gil_scoped_release allow_threads; // create driver handles hipFunction_t fun; hipModule_t mod; drv::dispatch::hipModuleLoadData(&mod, data.c_str()); drv::dispatch::hipModuleGetFunction(&fun, mod, name.c_str()); // get allocated registers and spilled registers from the function int n_regs = 0; int n_spills = 0; hipFuncAttributes attr; drv::dispatch::hipFuncGetAttributes(&attr, fun); drv::dispatch::hipFuncGetAttributes(&attr, fun); n_regs = attr.numRegs; n_spills = attr.localSizeBytes / 4; // set dynamic shared memory if necessary int shared_optin; drv::dispatch::hipDeviceGetAttribute(&shared_optin, hipDeviceAttributeSharedMemPerBlockOptin, device); if(n_shared_bytes > 49152 && shared_optin > 49152){ drv::dispatch::hipFuncSetCacheConfig(fun, hipFuncCachePreferShared); int shared_total, shared_static; drv::dispatch::hipDeviceGetAttribute(&shared_total, hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, device); drv::dispatch::hipFuncGetAttributes(&attr, fun); shared_total = attr.sharedSizeBytes; // drv::dispatch::hipFuncSetAttribute(fun, hipFuncAttributeMaxDynamicSharedMemorySize, shared_optin - shared_static); } return std::make_tuple((uint64_t)mod, (uint64_t)fun, (uint64_t)n_regs, (uint64_t)n_spills); }, py::return_value_policy::take_ownership ); struct InstanceDescriptor { std::unordered_set divisibleBy16; std::unordered_set equalTo1; }; py::class_(m, "instance_descriptor") .def(py::init<>()) .def(py::init, std::unordered_set>()) .def_readonly("divisible_by_16", &InstanceDescriptor::divisibleBy16) .def_readonly("equal_to_1", &InstanceDescriptor::equalTo1); } /*****************************************************************************/ /* Python bindings for triton::ir */ /*****************************************************************************/ void init_triton_ir(py::module &&m) { using ret = py::return_value_policy; using namespace pybind11::literals; py::enum_(m, "CACHE_MODIFIER") .value("NONE", ir::load_inst::NONE) .value("CA", ir::load_inst::CA) .value("CG", ir::load_inst::CG) .export_values(); py::enum_(m, "EVICTION_POLICY") .value("NORMAL", ir::load_inst::NORMAL) .value("EVICT_FIRST", ir::load_inst::EVICT_FIRST) .value("EVICT_LAST", ir::load_inst::EVICT_LAST) .export_values(); py::enum_(m, "REDUCE_OP") .value("ADD", ir::reduce_inst::ADD) .value("FADD", ir::reduce_inst::FADD) .value("MIN", ir::reduce_inst::MIN) .value("MAX", ir::reduce_inst::MAX) .value("UMIN", ir::reduce_inst::UMIN) .value("UMAX", ir::reduce_inst::UMAX) .value("ARGMIN", ir::reduce_inst::ARGMIN) .value("ARGMAX", ir::reduce_inst::ARGMAX) .value("ARGUMIN", ir::reduce_inst::ARGUMIN) .value("ARGUMAX", ir::reduce_inst::ARGUMAX) .value("FMIN", ir::reduce_inst::FMIN) .value("FMAX", ir::reduce_inst::FMAX) .value("ARGFMIN", ir::reduce_inst::ARGFMIN) .value("ARGFMAX", ir::reduce_inst::ARGFMAX) .value("XOR", ir::reduce_inst::XOR); py::enum_(m, "ATOMIC_OP") .value("ADD", ir::atomic_rmw_op_t::Add) .value("FADD", ir::atomic_rmw_op_t::FAdd) .value("AND", ir::atomic_rmw_op_t::And) .value("OR", ir::atomic_rmw_op_t::Or) .value("XOR", ir::atomic_rmw_op_t::Xor) .value("XCHG", ir::atomic_rmw_op_t::Xchg) .value("MAX", ir::atomic_rmw_op_t::Max) .value("MIN", ir::atomic_rmw_op_t::Min) .value("UMIN", ir::atomic_rmw_op_t::UMin) .value("UMAX", ir::atomic_rmw_op_t::UMax); py::class_(m, "context") .def(py::init<>()); py::class_(m, "value") .def("multiple_of", [](ir::value *self, std::vector val) { if (auto *instr = dynamic_cast(self)) { instr->set_metadata(ir::metadata::multiple_of, val); } else throw std::runtime_error("multiple_of"); }) .def("max_contiguous", [](ir::value *self, std::vector val) { if (auto *instr = dynamic_cast(self)) { instr->set_metadata(ir::metadata::max_contiguous, val); } else throw std::runtime_error("max_contiguous"); }) .def("set_fdiv_ieee_rounding", [](ir::value *self, bool val) { if (auto *instr = dynamic_cast(self)) instr->set_fdiv_ieee_rounding(val); else throw std::runtime_error("set_fdiv_ieee_rounding"); }) .def("is_phi", [](ir::value *self) { if (auto *pn = dynamic_cast(self)) return true; return false; }) .def("ops", [](ir::value *self) { if (auto *instr = dynamic_cast(self)) { return instr->ops(); } throw std::runtime_error("cannot use ops()"); }) .def("replace_all_uses_with", &ir::value::replace_all_uses_with) .def("erase_from_parent", [](ir::value *self) { if (auto *instr = dynamic_cast(self)) return instr->erase_from_parent(); throw std::runtime_error("cannot use erase_from_parent"); }) .def_property("name", &ir::value::get_name, &ir::value::set_name) .def_property_readonly("type", &ir::value::get_type); py::class_(m, "user"); py::class_(m, "constant") .def("get_null_value", &ir::constant::get_null_value, ret::reference) .def("get_all_ones_value", &ir::constant::get_all_ones_value, ret::reference); py::class_(m, "undef") .def("get", &ir::undef_value::get, ret::reference); py::class_(m, "constant_int") .def_property_readonly("value", &ir::constant_int::get_value) .def("__int__", [](ir::constant_int *self) { return self->get_value(); }) .def("__bool__", [](ir::constant_int *self) { return self->get_value(); }); py::class_(m, "constant_float") .def_property_readonly("value", &ir::constant_fp::get_value) .def("get", [](ir::type* ty, double val) { return ir::constant_fp::get(ty, val); }, ret::reference); py::class_(m, "instruction") .def("get_parent", [](ir::instruction *self) { return self->get_parent(); }, ret::reference); py::class_(m, "phi_node") .def("add_incoming", &ir::phi_node::add_incoming); py::class_(m, "type") .def("make_ptr", &ir::pointer_type::get, ret::reference) .def("make_function", &ir::function_type::get, ret::reference) .def("make_block", &ir::block_type::get, ret::reference) .def("get_void", &ir::type::get_void_ty, ret::reference) .def("get_fp8", &ir::type::get_fp8_ty, ret::reference) .def("get_fp16", &ir::type::get_fp16_ty, ret::reference) .def("get_bf16", &ir::type::get_bf16_ty, ret::reference) .def("get_fp32", &ir::type::get_fp32_ty, ret::reference) .def("get_fp64", &ir::type::get_fp64_ty, ret::reference) .def("get_int1", &ir::type::get_int1_ty, ret::reference) .def("get_int8", &ir::type::get_int8_ty, ret::reference) .def("get_int16", &ir::type::get_int16_ty, ret::reference) .def("get_int32", &ir::type::get_int32_ty, ret::reference) .def("get_int64", &ir::type::get_int64_ty, ret::reference) .def("get_fp_mantissa_width", &ir::type::get_fp_mantissa_width, ret::reference) .def("get_block_shapes", &ir::type::get_block_shapes) .def("is_ptr", &ir::type::is_pointer_ty) .def("is_int", static_cast(&ir::type::is_integer_ty)) .def("is_floating", &ir::type::is_floating_point_ty) .def("is_block", &ir::type::is_block_ty) .def("is_struct", &ir::type::is_struct_ty) .def("is_void", &ir::type::is_void_ty) .def("is_bool", &ir::type::is_bool_ty) .def("is_fp8", &ir::type::is_fp8_ty) .def("is_fp16", &ir::type::is_fp16_ty) .def("is_bf16", &ir::type::is_bf16_ty) .def("is_fp32", &ir::type::is_fp32_ty) .def("is_fp64", &ir::type::is_fp64_ty) .def("is_int1", [](ir::type *self) { return self->is_integer_ty(1); }) .def("is_int8", [](ir::type *self) { return self->is_integer_ty(8); }) .def("is_int16", [](ir::type *self) { return self->is_integer_ty(16); }) .def("is_int32", [](ir::type *self) { return self->is_integer_ty(32); }) .def("is_int64", [](ir::type *self) { return self->is_integer_ty(64); }) .def("is_int_or_tileint", &ir::type::is_int_or_tileint_ty) .def("repr", &ir::type::repr) .def_property_readonly("fp_mantissa_width", &ir::type::get_fp_mantissa_width) .def_property_readonly("scalar", &ir::type::get_scalar_ty) .def_property_readonly("context", &ir::type::get_context, ret::reference) .def_property_readonly("int_bitwidth", &ir::type::get_integer_bitwidth) .def_property_readonly("primitive_bitwidth", &ir::type::get_primitive_size_in_bits); py::class_(m, "pointer_type") .def_property_readonly("element", &ir::pointer_type::get_element_ty, ret::reference) .def_property_readonly("address_space", &ir::pointer_type::get_pointer_address_space, ret::reference); py::class_(m, "function_type") .def_property_readonly("ret_ty", &ir::function_type::get_return_ty) .def_property_readonly("arg_tys", [](ir::function_type* self){ return std::vector(self->params_begin(), self->params_end()); }); py::class_(m, "integer_type"); py::class_(m, "block_type") .def_property_readonly("shape", &ir::block_type::get_shapes) .def_property_readonly("numel", &ir::type::get_tile_num_elements); py::class_(m, "struct_type") .def("get", &ir::struct_type::get, ret::reference) .def_property_readonly("num_types", &ir::struct_type::get_num_types); py::class_(m, "module", py::dynamic_attr()) .def(py::init()) .def("has_function", &ir::module::has_function) .def("get_function", &ir::module::get_function, ret::reference) .def("get_functions", &ir::module::get_function_list, ret::reference) .def("get_or_insert_function", &ir::module::get_or_insert_function, ret::reference) .def("print", [](ir::module *self) { self->print(std::cout); }) .def("reset_ret_ty", &ir::module::reset_ret_ty) .def("set_instr_metadata", [](ir::module *self, const std::string &name, ir::value *value) { const auto metadatas = self->get_metadatas(); auto it = metadatas.find(name); if (it != metadatas.end()) if (auto *instr = dynamic_cast(value)) { instr->set_metadata(it->second.first, it->second.second); } }) .def_property_readonly("builder", &ir::module::get_builder, ret::reference); using eattr = ir::attribute_kind_t; py::enum_(m, "attribute_kind") .value("readonly", eattr::readonly) .value("writeonly", eattr::writeonly) .value("noalias", eattr::noalias) .value("aligned", eattr::aligned) .value("multiple_of", eattr::multiple_of) .value("retune", eattr::retune) .value("not_implemented", eattr::not_implemented); py::class_(m, "attribute") .def(py::init()) .def_property_readonly("value", &ir::attribute::get_value); py::class_(m, "function") .def_property_readonly("args", &ir::function::args) .def_property_readonly("attrs", &ir::function::attrs) .def("set_is_kernel", &ir::function::set_is_kernel) .def("add_attr", &ir::function::add_attr) .def("has_attr", &ir::function::has_attr) .def("get_attrs", &ir::function::get_attributes); py::class_(m, "argument") .def_property_readonly("parent", &ir::argument::get_parent, ret::reference) .def_property_readonly("arg_no", &ir::argument::get_arg_no); py::class_(m, "basic_block") .def("create", &ir::basic_block::create, ret::reference, py::arg(), py::arg(), py::arg() = nullptr) .def("get_predecessors", &ir::basic_block::get_predecessors, ret::reference) .def("get_first_non_phi", [](ir::basic_block *self) -> ir::instruction* { ir::basic_block::iterator it = self->get_first_non_phi(); if (it == self->end()) return nullptr; return *it; }, ret::reference) .def_property_readonly("parent", &ir::basic_block::get_parent, ret::reference); py::class_(m, "bb_iterator"); py::class_(m, "builder", py::dynamic_attr()) .def(py::init()) // getters .def_property_readonly("context", &ir::builder::get_context, ret::reference) // control flow .def("call", &ir::builder::create_call, ret::reference) .def("launch", &ir::builder::create_launch, ret::reference) .def("br", &ir::builder::create_br, ret::reference) .def("cond_br", &ir::builder::create_cond_br, ret::reference) .def("ret_void", &ir::builder::create_ret_void, ret::reference) .def("ret", &ir::builder::create_ret, ret::reference) // insertion block/point, insert points are represented as (*bb, *instr) .def("get_insert_block", &ir::builder::get_insert_block, ret::reference) .def("set_insert_block", (void (ir::builder::*)(ir::basic_block *)) & ir::builder::set_insert_point) .def("get_insert_point", [](ir::builder *self) { ir::basic_block *bb = self->get_insert_block(); ir::basic_block::iterator it = self->get_insert_point(); ir::instruction *instr = it == bb->end() ? nullptr : *it; return std::make_pair(bb, instr); }, ret::reference) .def("set_insert_point", [](ir::builder *self, std::pair pt) { ir::basic_block *bb = pt.first; ir::instruction *instr = pt.second; if (instr) { if (bb != instr->get_parent()) throw std::runtime_error("invalid insertion point, instr not in bb"); self->set_insert_point(instr); } else { assert(bb); self->set_insert_point(bb); } }) // Constants .def("get_int1", &ir::builder::get_int1, ret::reference) .def("get_int32", [](ir::builder *self, int32_t v) { return self->get_int32((uint32_t)v); }, ret::reference) .def("get_uint32", &ir::builder::get_int32, ret::reference) .def("get_int64", [](ir::builder *self, int64_t v) { return self->get_int64((uint64_t)v); }, ret::reference) .def("get_uint64", &ir::builder::get_int64, ret::reference) .def("get_float16", &ir::builder::get_float16, ret::reference) .def("get_float32", &ir::builder::get_float32, ret::reference) .def("get_range", &ir::builder::get_range, ret::reference) // Types .def("get_void_ty", &ir::builder::get_void_ty, ret::reference) .def("get_int1_ty", &ir::builder::get_int1_ty, ret::reference) .def("get_int8_ty", &ir::builder::get_int8_ty, ret::reference) .def("get_int16_ty", &ir::builder::get_int16_ty, ret::reference) .def("get_int32_ty", &ir::builder::get_int32_ty, ret::reference) .def("get_int64_ty", &ir::builder::get_int64_ty, ret::reference) .def("get_fp8_ty", &ir::builder::get_fp8_ty, ret::reference) .def("get_half_ty", &ir::builder::get_half_ty, ret::reference) .def("get_bf16_ty", &ir::builder::get_bf16_ty, ret::reference) .def("get_float_ty", &ir::builder::get_float_ty, ret::reference) .def("get_double_ty", &ir::builder::get_double_ty, ret::reference) // terminator instructions .def("create_br", &ir::builder::create_br, ret::reference) .def("create_cond_br", &ir::builder::create_cond_br, ret::reference) .def("create_ret_void", &ir::builder::create_ret_void, ret::reference) // Dequantize instructions .def("create_dequantize", &ir::builder::create_dequantize, ret::reference) // Cast instructions .def("create_bitcast", &ir::builder::create_bitcast, ret::reference) .def("create_cast", &ir::builder::create_cast, ret::reference) .def("create_ptr_to_int", &ir::builder::create_ptr_to_int, ret::reference) .def("create_si_to_fp", &ir::builder::create_si_to_fp, ret::reference) .def("create_ui_to_fp", &ir::builder::create_ui_to_fp, ret::reference) .def("create_fp_to_si", &ir::builder::create_fp_to_si, ret::reference) .def("create_fp_to_ui", &ir::builder::create_fp_to_ui, ret::reference) .def("create_fp_ext", &ir::builder::create_fp_ext, ret::reference) .def("create_fp_trunc", &ir::builder::create_fp_trunc, ret::reference) .def("create_int_cast", &ir::builder::create_int_cast, ret::reference) .def("create_downcast", &ir::builder::create_downcast, ret::reference) .def("create_int_to_ptr", &ir::builder::create_int_to_ptr, ret::reference) .def("create_ptr_to_int", &ir::builder::create_ptr_to_int, ret::reference) // phi .def("create_phi", &ir::builder::create_phi, ret::reference) // Binary instructions .def("create_insert_nuwnswb_binop", &ir::builder::create_insert_nuwnswb_binop, ret::reference) .def("create_fmul", &ir::builder::create_fmul, ret::reference) .def("create_fdiv", &ir::builder::create_fdiv, ret::reference) .def("create_frem", &ir::builder::create_frem, ret::reference) .def("create_fadd", &ir::builder::create_fadd, ret::reference) .def("create_fsub", &ir::builder::create_fsub, ret::reference) .def("create_mul", &ir::builder::create_mul, ret::reference, py::arg("lhs"), py::arg("rhs"), py::arg("has_nuw")=false, py::arg("has_nsw")=false) .def("create_sdiv", &ir::builder::create_sdiv, ret::reference) .def("create_udiv", &ir::builder::create_udiv, ret::reference) .def("create_srem", &ir::builder::create_srem, ret::reference) .def("create_urem", &ir::builder::create_urem, ret::reference) .def("create_add", &ir::builder::create_add, ret::reference, py::arg("lhs"), py::arg("rhs"), py::arg("has_nuw")=false, py::arg("has_nsw")=false) .def("create_sub", &ir::builder::create_sub, ret::reference, py::arg("lhs"), py::arg("rhs"), py::arg("has_nuw")=false, py::arg("has_nsw")=false) .def("create_shl", &ir::builder::create_shl, ret::reference, py::arg("lhs"), py::arg("rhs"), py::arg("has_nuw")=false, py::arg("has_nsw")=false) .def("create_lshr", &ir::builder::create_lshr, ret::reference, py::arg("lhs"), py::arg("rhs"), py::arg("has_nuw")=false, py::arg("has_nsw")=false) .def("create_ashr", &ir::builder::create_ashr, ret::reference, py::arg("lhs"), py::arg("rhs"), py::arg("has_nuw")=false, py::arg("has_nsw")=false) // GEP .def("create_gep", &ir::builder::create_gep, ret::reference) // Comparison (int) .def("create_icmp", &ir::builder::create_icmp, ret::reference) .def("create_icmpSLE", &ir::builder::create_icmpSLE, ret::reference) .def("create_icmpSLT", &ir::builder::create_icmpSLT, ret::reference) .def("create_icmpSGE", &ir::builder::create_icmpSGE, ret::reference) .def("create_icmpSGT", &ir::builder::create_icmpSGT, ret::reference) .def("create_icmpULE", &ir::builder::create_icmpULE, ret::reference) .def("create_icmpULT", &ir::builder::create_icmpULT, ret::reference) .def("create_icmpUGE", &ir::builder::create_icmpUGE, ret::reference) .def("create_icmpUGT", &ir::builder::create_icmpUGT, ret::reference) .def("create_icmpEQ", &ir::builder::create_icmpEQ, ret::reference) .def("create_icmpNE", &ir::builder::create_icmpNE, ret::reference) // Comparison (float) .def("create_fcmp", &ir::builder::create_fcmp, ret::reference) .def("create_fcmpOLT", &ir::builder::create_fcmpOLT, ret::reference) .def("create_fcmpOGT", &ir::builder::create_fcmpOGT, ret::reference) .def("create_fcmpOLE", &ir::builder::create_fcmpOLE, ret::reference) .def("create_fcmpOGE", &ir::builder::create_fcmpOGE, ret::reference) .def("create_fcmpOEQ", &ir::builder::create_fcmpOEQ, ret::reference) .def("create_fcmpONE", &ir::builder::create_fcmpONE, ret::reference) .def("create_fcmpULT", &ir::builder::create_fcmpULT, ret::reference) .def("create_fcmpUGT", &ir::builder::create_fcmpUGT, ret::reference) .def("create_fcmpULE", &ir::builder::create_fcmpULE, ret::reference) .def("create_fcmpUGE", &ir::builder::create_fcmpUGE, ret::reference) .def("create_fcmpUEQ", &ir::builder::create_fcmpUEQ, ret::reference) .def("create_fcmpUNE", &ir::builder::create_fcmpUNE, ret::reference) // Logical .def("create_and", &ir::builder::create_and, ret::reference) .def("create_xor", &ir::builder::create_xor, ret::reference) .def("create_or", &ir::builder::create_or, ret::reference) // Input/Output .def("create_load", &ir::builder::create_load, ret::reference) .def("create_store", &ir::builder::create_store, ret::reference) .def("create_masked_load", &ir::builder::create_masked_load, ret::reference) .def("create_masked_store", &ir::builder::create_masked_store, ret::reference) // Block instruction .def("create_splat", &ir::builder::create_splat, ret::reference) .def("create_reshape", &ir::builder::create_reshape, ret::reference) .def("create_cat", &ir::builder::create_cat, ret::reference) .def("create_broadcast", &ir::builder::create_broadcast, ret::reference) // atomic .def("create_atomic_cas", &ir::builder::create_atomic_cas, ret::reference) .def("create_atomic_rmw", &ir::builder::create_atomic_rmw, ret::reference) // Utilities .def("create_clock", &ir::builder::create_clock, ret::reference) .def("create_globaltimer", &ir::builder::create_globaltimer, ret::reference) // Extern instruction .def("create_extern_elementwise", &ir::builder::create_extern_elementwise, ret::reference) // Built-in instruction .def("create_get_program_id", &ir::builder::create_get_program_id, ret::reference) .def("create_get_num_programs", &ir::builder::create_get_num_programs, ret::reference) .def("create_exp", &ir::builder::create_exp, ret::reference) .def("create_cos", &ir::builder::create_cos, ret::reference) .def("create_sin", &ir::builder::create_sin, ret::reference) .def("create_log", &ir::builder::create_log, ret::reference) .def("create_dot", &ir::builder::create_dot, ret::reference) .def("create_trans", &ir::builder::create_trans, ret::reference) .def("create_sqrt", &ir::builder::create_sqrt, ret::reference) .def("create_reduce", &ir::builder::create_reduce, ret::reference) .def("create_select", &ir::builder::create_select, ret::reference) // struct .def("insert_value", &ir::builder::create_insert_value, ret::reference) .def("extract_value", &ir::builder::create_extract_value, ret::reference) // Intrinsics // These have no place in the IR, and hopefully they can be removed at some point .def("create_umulhi", &ir::builder::create_umulhi, ret::reference) .def("create_copy_to_shared", &ir::builder::create_copy_to_shared, ret::reference) .def("create_masked_load_async", &ir::builder::create_masked_load_async, ret::reference) .def("create_copy_from_shared", &ir::builder::create_copy_from_shared, ret::reference) .def("create_barrier", &ir::builder::create_barrier, ret::reference) .def("create_async_wait", &ir::builder::create_async_wait, ret::reference) .def("create_prefetch_s", &ir::builder::create_prefetch_s, ret::reference); } void init_triton(py::module &m) { py::module subm = m.def_submodule("triton"); init_triton_codegen(std::move(subm.def_submodule("code_gen"))); init_triton_runtime(std::move(subm.def_submodule("runtime"))); init_triton_ir(std::move(subm.def_submodule("ir"))); }