import random import time import sys import tools import pyviennacl as vcl import numpy as np import copy from deap import algorithms from collections import OrderedDict as odict def closest_divisor(N, x): x_low=x_high=max(1,min(round(x),N)) while N % x_low > 0 and x_low>0: x_low = x_low - 1 while N % x_high > 0 and x_high < N: x_high = x_high + 1 return x_low if x - x_low < x_high - x else x_high class GeneticOperators(object): def __init__(self, device, statement, parameters, parameter_names, TemplateType, build_template): self.device = device self.statement = statement self.parameters = parameters self.parameter_names = parameter_names self.TemplateType = TemplateType self.ParameterType = TemplateType.Parameters self.build_template = build_template self.cache = {} self.indpb = 0.1 @staticmethod def decode(s): s = ''.join(s) decode_element = lambda x:2**int(x, 2) simd = decode_element(s[0:3]) ls0 = decode_element(s[2:5]) ls1 = decode_element(s[5:8]) kL = decode_element(s[8:11]) mS = decode_element(s[11:14]) kS = decode_element(s[14:17]) nS = decode_element(s[17:20]) FetchingPolicy = vcl.atidlas.FetchingPolicy fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED] fetchA = fetch[0] fetchB = fetch[0] if fetchA==FetchingPolicy.FETCH_FROM_LOCAL or fetchB==FetchingPolicy.FETCH_FROM_LOCAL: lf0 = decode_element(s[24:27]) lf1 = ls0*ls1/lf0 else: lf0, lf1 = 0, 0 return [simd, ls0, kL, ls1, mS, kS, nS, fetchA, fetchB, lf0, lf1] def init(self): while True: result = [str(random.randint(0,1)) for i in range(27)] template = self.build_template(self.TemplateType.Parameters(*self.decode(result))) registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4 lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement)) local_size = template.parameters.local_size_0*template.parameters.local_size_1 occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage) if template.check(self.statement)==0 and occupancy_record.occupancy >= 10 : return result def mutate(self, individual): while True: new_individual = copy.deepcopy(individual) for i in range(len(new_individual)): if(random.random() < self.indpb): new_individual[i] = '1' if new_individual[i]=='0' else '0' parameters = self.decode(new_individual) template = self.build_template(self.TemplateType.Parameters(*parameters)) print parameters, tools.skip(template, self.statement, self.device) if not tools.skip(template, self.statement, self.device): break return new_individual, def evaluate(self, individual): if tuple(individual) not in self.cache: parameters = self.decode(individual) template = self.build_template(self.TemplateType.Parameters(*parameters)) try: self.cache[tuple(individual)] = tools.benchmark(template, self.statement, self.device) except: self.cache[tuple(individual)] = 10 return self.cache[tuple(individual)], def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric): # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in population if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit if halloffame is not None: halloffame.update(population) # Begin the generational process gen = 0 maxtime = time.strptime(maxtime, '%Mm%Ss') maxtime = maxtime.tm_min*60 + maxtime.tm_sec start_time = time.time() while time.time() - start_time < maxtime and gen < maxgen: # Vary the population offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb) # Evaluate the individuals with an invalid fitness invalid_ind = [ind for ind in offspring if not ind.fitness.valid] fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit # Update the hall of fame with the generated individuals if halloffame is not None: halloffame.update(offspring) # Select the next generation population population[:] = toolbox.select(population + offspring, mu) # Update the statistics with the new population gen = gen + 1 best_profile = '(%s)'%','.join(map(str,GeneticOperators.decode(halloffame[0]))); best_performance = compute_perf(halloffame[0].fitness.values[0]) sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile)) sys.stdout.flush() sys.stdout.write('\n') return population