import triton import torch import os def rounded_linspace(low, high, steps, div): ret = torch.linspace(low, high, steps) ret = (ret.int() + div - 1) // div * div ret = torch.unique(ret) return list(map(int, ret)) # Square benchmarks nt = {False: "n", True: "t"} square_confs = [ triton.testing.Benchmark( x_names=["M", "N", "K"], x_vals=rounded_linspace(512, 8192, 32, 128), y_name="provider", y_vals=["torch", "triton", "cutlass"], y_lines=["Torch", "Triton", "CUTLASS"], ylabel="TFLOPS", loglog=False, plot_name=f"matmul-square-{nt[AT]}{nt[BT]}", args={ "AT": AT, "BT": BT, "dtype": torch.float16 }, ) for AT in [False] for BT in [False] ] # Transformer training benchmarks transformer_confs = [ triton.testing.Benchmark( x_names=[x], x_vals = rounded_linspace(NK//16, NK, 32, 128), y_name="provider", y_vals=["torch", "triton", "cutlass"], y_lines=["Torch", "Triton", "CUTLASS"], ylabel="TFLOPS", loglog=False, plot_name=f"matmul-M{M}-{'NK'.replace(x, '')}{NK}", args= {"M": M, 'NK'.replace(x,''): NK, "AT": False, "BT": False, "dtype": torch.float16} ) for NK in [8192]\ for i, x in enumerate(["N", "K"])\ for M in [2048] ] @triton.testing.perf_report(square_confs) def bench_op(M, N, K, AT, BT, dtype, provider, warmup=10, rep=50): a = torch.rand((K, M) if AT else (M, K), device="cuda", dtype=dtype) b = torch.rand((N, K) if BT else (K, N), device="cuda", dtype=dtype) if AT: a = a.t() if BT: b = b.t() num_flops = 2 * M * N * K tflops = lambda ms: 2. * M * N * K / ms * 1e-9 if provider == "torch": ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), warmup=warmup, rep=rep) return tflops(ms), tflops(max_ms), tflops(min_ms) if provider == "triton": ms, min_ms, max_ms = triton.testing.do_bench(lambda: triton.ops.matmul(a, b), warmup=warmup, rep=rep) return tflops(ms), tflops(max_ms), tflops(min_ms) if provider == "cutlass": cutlass_matmul = triton.testing.cutlass_matmul try: ms, min_ms, max_ms = triton.testing.do_bench(lambda: cutlass_matmul(a, b), warmup=warmup, rep=rep) return tflops(ms), tflops(max_ms), tflops(min_ms) except: return None return None