#include #include #include #include "triton/runtime/jit.h" #include "triton/driver/backend.h" #include "triton/driver/stream.h" #include "triton/tools/bench.hpp" #include "triton/dnn/shift.h" #include "triton/external/half.hpp" double do_bench(triton::driver::context* context, int32_t R, int32_t S, int32_t B, int32_t F, int32_t H, int32_t W, int32_t C, triton::dnn::op_t op, triton::dnn::layout_t layout, std::string numeric_t) { typedef float NumericT; // random shifts std::vector shift_h(C); std::vector shift_w(C); for(int32_t c = 0; c < C; c++){ shift_h[c] = rand() % R - R / 2; shift_w[c] = rand() % S - S / 2; } // configuration triton::dnn::shift shift(B, C, 1, H, W, 1, R, S, F, 1, 1, shift_h.data(), shift_w.data(), numeric_t, numeric_t, op, false, layout); // host buffers size_t a_size = B*C*H*W; size_t b_size = C*F; size_t c_size = B*F*H*W; if(op == triton::dnn::BPROP) std::swap(a_size, c_size); if(op == triton::dnn::WGRAD){ std::swap(b_size, c_size); std::swap(a_size, b_size); } std::vector ha(a_size); std::vector hb(b_size); std::vector hc(c_size); std::vector rc(hc.size()); // device buffers triton::driver::buffer* dc = triton::driver::buffer::create(context, hc.size()*4); triton::driver::buffer* da = triton::driver::buffer::create(context, ha.size()*sizeof(NumericT)); triton::driver::buffer* db = triton::driver::buffer::create(context, hb.size()*sizeof(NumericT)); triton::driver::stream* stream = triton::driver::stream::create(context); // initialize host srand(0); for(size_t i = 0; i < ha.size(); i++) ha[i] = (NumericT)rand() / RAND_MAX; for(size_t i = 0; i < hb.size(); i++) hb[i] = (NumericT)rand() / RAND_MAX; for(size_t i = 0; i < hc.size(); i++) hc[i] = 0; // initialize device stream->write(da, true, 0, ha); stream->write(db, true, 0, hb); stream->write(dc, true, 0, hc); stream->synchronize(); double nanosec = triton::tools::bench([&]() { shift.enqueue(stream, {da, db, dc});}, stream); return shift.num_flops() / nanosec * 1e-3; } int main() { using triton::dnn::op_t; using triton::dnn::layout_t; struct config_t{ int32_t B; int32_t C; int32_t H; int32_t W; int32_t R; int32_t S; int32_t F; int32_t stride_h; int32_t stride_w; op_t op; layout_t layout; std::string ty; std::string repr() { std::ostringstream oss; oss << B << ", " << C << ", " << H << ", " << W << ", " << R << ", " << S << ", " << F << ", " << op << ", " << layout << ", " << ty; return oss.str(); } double perf(triton::driver::context *context){ return do_bench(context, R, S, B, F, H, W, C, op, layout, ty); } }; // shapes to benchmark std::vector configs; std::vector resnet18 = { {128, 128, 32, 32, 3, 3, 128, 1, 1}, {128, 128, 32, 32, 3, 3, 256, 2, 2}, {128, 256, 16, 16, 3, 3, 256, 1, 1}, {128, 256, 16, 16, 3, 3, 512, 2, 2}, {128, 512, 8, 8, 3, 3, 512, 1, 1}, {128, 512, 8, 8, 3, 3, 1024, 1, 1}, {128, 1024, 8, 8, 3, 3, 1024, 1, 1} }; for(config_t c: resnet18){ for(op_t op: {op_t::FPROP, op_t::BPROP, op_t::WGRAD}) configs.push_back({c.B, c.C, c.H, c.W, c.R, c.S, c.F, c.stride_h, c.stride_w, op, layout_t::CHWN, "fp16"}); } // initialize default compute device auto context = triton::driver::backend::contexts::get_default(); for(config_t c: configs) std::cout << c.repr() << ", " << c.perf(context) << std::endl; }