import torch import triton x = torch.autograd.Variable(torch.randn(16, 64, 8, 8).cuda(), requires_grad=True) w = torch.autograd.Variable(torch.randn(64, 3, 3, 64).cuda(), requires_grad=True) cuw = torch.autograd.Variable(w.permute(3,0,1,2).cuda(), requires_grad=True) y_target = torch.autograd.Variable(torch.randn(16, 64, 6, 6).cuda(), requires_grad=True) def run(x, w, conv): y = conv(x, w) loss = (y - y_target).norm(2) loss.backward() return loss, y.clone(), x.grad.clone(), w.grad.clone() ttyloss, tty, ttdx, ttdw = run(x, w, lambda x, w: triton.ConvFunction.apply(x, w, 0)) x.grad.zero_() w.grad.zero_() culoss, cuy, cudx, cudw = run(x, cuw, lambda x, w: torch.nn.functional.conv2d(x, w, padding=0)) print((tty - cuy).norm(2)) print((ttdx - cudx).norm(2)) print((ttdw.permute(3,0,1,2) - cudw).norm(2))