#include #include #include "isaac/array.h" #include "isaac/value_scalar.h" #include "isaac/symbolic/expression.h" #include "isaac/symbolic/preset.h" namespace isaac { void fill(lhs_rhs_element &x, invalid_node) { x.type_family = INVALID_TYPE_FAMILY; x.subtype = INVALID_SUBTYPE; x.dtype = INVALID_NUMERIC_TYPE; } void fill(lhs_rhs_element & x, std::size_t node_index) { x.type_family = COMPOSITE_OPERATOR_FAMILY; x.subtype = INVALID_SUBTYPE; x.dtype = INVALID_NUMERIC_TYPE; x.node_index = node_index; } void fill(lhs_rhs_element & x, for_idx_t index) { x.type_family = PLACEHOLDER_TYPE_FAMILY; x.subtype = FOR_LOOP_INDEX_TYPE; x.dtype = INVALID_NUMERIC_TYPE; x.for_idx = index; } void fill(lhs_rhs_element & x, array const & a) { x.type_family = ARRAY_TYPE_FAMILY; x.subtype = DENSE_ARRAY_TYPE; x.dtype = a.dtype(); x.array = (array*)&a; } void fill(lhs_rhs_element & x, value_scalar const & v) { x.type_family = VALUE_TYPE_FAMILY; x.dtype = v.dtype(); x.subtype = VALUE_SCALAR_TYPE; x.vscalar = v.values(); } lhs_rhs_element::lhs_rhs_element(){} // op_element::op_element() {} op_element::op_element(operation_node_type_family const & _type_family, operation_node_type const & _type) : type_family(_type_family), type(_type){} // math_expression::math_expression(for_idx_t const &lhs, for_idx_t const &rhs, const op_element &op) : tree_(1), root_(0), context_(NULL), dtype_(INVALID_NUMERIC_TYPE), shape_(1) { fill(tree_[0].lhs, lhs); tree_[0].op = op; fill(tree_[0].rhs, rhs); } math_expression::math_expression(for_idx_t const &lhs, value_scalar const &rhs, const op_element &op, const numeric_type &dtype) : tree_(1), root_(0), context_(NULL), dtype_(dtype), shape_(1) { fill(tree_[0].lhs, lhs); tree_[0].op = op; fill(tree_[0].rhs, rhs); } math_expression::math_expression(value_scalar const &lhs, for_idx_t const &rhs, const op_element &op, const numeric_type &dtype) : tree_(1), root_(0), context_(NULL), dtype_(dtype), shape_(1) { fill(tree_[0].lhs, lhs); tree_[0].op = op; fill(tree_[0].rhs, rhs); } //math_expression(for_idx_t const &lhs, for_idx_t const &rhs, const op_element &op); //math_expression(for_idx_t const &lhs, value_scalar const &rhs, const op_element &op, const numeric_type &dtype); template math_expression::math_expression(LT const & lhs, RT const & rhs, op_element const & op, driver::Context const & context, numeric_type const & dtype, size4 const & shape) : tree_(1), root_(0), context_(&context), dtype_(dtype), shape_(shape) { fill(tree_[0].lhs, lhs); tree_[0].op = op; fill(tree_[0].rhs, rhs); } template math_expression::math_expression(math_expression const & lhs, RT const & rhs, op_element const & op, driver::Context const & context, numeric_type const & dtype, size4 const & shape) : tree_(lhs.tree_.size() + 1), root_(tree_.size()-1), context_(&context), dtype_(dtype), shape_(shape) { std::copy(lhs.tree_.begin(), lhs.tree_.end(), tree_.begin()); fill(tree_[root_].lhs, lhs.root_); tree_[root_].op = op; fill(tree_[root_].rhs, rhs); } template math_expression::math_expression(LT const & lhs, math_expression const & rhs, op_element const & op, driver::Context const & context, numeric_type const & dtype, size4 const & shape) : tree_(rhs.tree_.size() + 1), root_(tree_.size() - 1), context_(&context), dtype_(dtype), shape_(shape) { std::copy(rhs.tree_.begin(), rhs.tree_.end(), tree_.begin()); fill(tree_[root_].lhs, lhs); tree_[root_].op = op; fill(tree_[root_].rhs, rhs.root_); } math_expression::math_expression(math_expression const & lhs, math_expression const & rhs, op_element const & op, driver::Context const & context, numeric_type const & dtype, size4 const & shape): tree_(lhs.tree_.size() + rhs.tree_.size() + 1), root_(tree_.size()-1), context_(&context), dtype_(dtype), shape_(shape) { std::size_t lsize = lhs.tree_.size(); std::copy(lhs.tree_.begin(), lhs.tree_.end(), tree_.begin()); std::copy(rhs.tree_.begin(), rhs.tree_.end(), tree_.begin() + lsize); fill(tree_[root_].lhs, lhs.root_); tree_[root_].op = op; fill(tree_[root_].rhs, lsize + rhs.root_); for(container_type::iterator it = tree_.begin() + lsize ; it != tree_.end() - 1 ; ++it){ if(it->lhs.type_family==COMPOSITE_OPERATOR_FAMILY) it->lhs.node_index+=lsize; if(it->rhs.type_family==COMPOSITE_OPERATOR_FAMILY) it->rhs.node_index+=lsize; } root_ = tree_.size() - 1; } template math_expression::math_expression(math_expression const &, value_scalar const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(math_expression const &, invalid_node const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(math_expression const &, array const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(math_expression const &, for_idx_t const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(value_scalar const &, value_scalar const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(value_scalar const &, invalid_node const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(value_scalar const &, array const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(value_scalar const &, math_expression const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(invalid_node const &, value_scalar const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(invalid_node const &, math_expression const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(invalid_node const &, invalid_node const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(invalid_node const &, array const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(array const &, math_expression const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(array const &, value_scalar const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(array const &, invalid_node const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(array const &, array const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(array const &, for_idx_t const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(for_idx_t const &, math_expression const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); template math_expression::math_expression(for_idx_t const &, array const &, op_element const &, driver::Context const &, numeric_type const &, size4 const &); math_expression::container_type & math_expression::tree() { return tree_; } math_expression::container_type const & math_expression::tree() const { return tree_; } std::size_t math_expression::root() const { return root_; } driver::Context const & math_expression::context() const { return *context_; } numeric_type const & math_expression::dtype() const { return dtype_; } size4 math_expression::shape() const { return shape_; } int_t math_expression::nshape() const { return int_t((shape_[0] > 1) + (shape_[1] > 1)); } math_expression& math_expression::reshape(int_t size1, int_t size2) { assert(size1*size2==prod(shape_)); shape_ = size4(size1, size2); return *this; } math_expression math_expression::operator-() { return math_expression(*this, invalid_node(), op_element(OPERATOR_UNARY_TYPE_FAMILY, OPERATOR_SUB_TYPE), *context_, dtype_, shape_); } math_expression math_expression::operator!() { return math_expression(*this, invalid_node(), op_element(OPERATOR_UNARY_TYPE_FAMILY, OPERATOR_NEGATE_TYPE), *context_, INT_TYPE, shape_); } // math_expression::node const & lhs_most(math_expression::container_type const & array, math_expression::node const & init) { math_expression::node const * current = &init; while (current->lhs.type_family==COMPOSITE_OPERATOR_FAMILY) current = &array[current->lhs.node_index]; return *current; } math_expression::node const & lhs_most(math_expression::container_type const & array, size_t root) { return lhs_most(array, array[root]); } // math_expression for_idx_t::operator=(value_scalar const & r) const { return math_expression(*this, r, op_element(OPERATOR_BINARY_TYPE_FAMILY,OPERATOR_ASSIGN_TYPE), r.dtype()); } math_expression for_idx_t::operator=(math_expression const & r) const { return math_expression(*this, r, op_element(OPERATOR_BINARY_TYPE_FAMILY,OPERATOR_ASSIGN_TYPE), r.context(), r.dtype(), r.shape()); } math_expression for_idx_t::operator+=(value_scalar const & r) const { return *this = *this + r; } math_expression for_idx_t::operator-=(value_scalar const & r) const { return *this = *this - r; } math_expression for_idx_t::operator*=(value_scalar const & r) const { return *this = *this * r; } math_expression for_idx_t::operator/=(value_scalar const & r) const { return *this = *this / r; } }