Files
triton/lib/Conversion/TritonGPUToLLVM/TritonGPUToLLVM.cpp
Jokeren 43408fef5a Fix
2022-12-06 17:09:09 -08:00

4874 lines
197 KiB
C++

#include "triton/Conversion/TritonGPUToLLVM/TritonGPUToLLVM.h"
#include "../PassDetail.h"
#include "./DotHelpers.h"
#include "./Utility.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/MathToLLVM/MathToLLVM.h"
#include "mlir/Conversion/SCFToStandard/SCFToStandard.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/DialectConversion.h"
#include "triton/Analysis/Allocation.h"
#include "triton/Analysis/AxisInfo.h"
#include "triton/Analysis/Membar.h"
#include "triton/Analysis/Utility.h"
#include "triton/Conversion/MLIRTypes.h"
#include "triton/Conversion/TritonGPUToLLVM/PtxAsmFormat.h"
#include "triton/Conversion/TritonToTritonGPU/TritonToTritonGPU.h"
#include "triton/Dialect/Triton/IR/Dialect.h"
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include <memory>
#include <numeric>
#include <string>
using namespace mlir;
using namespace mlir::triton;
using ::mlir::LLVM::DotOpFMAConversionHelper;
using ::mlir::LLVM::DotOpMmaV1ConversionHelper;
using ::mlir::LLVM::DotOpMmaV2ConversionHelper;
using ::mlir::LLVM::getElementsFromStruct;
using ::mlir::LLVM::getSharedMemoryObjectFromStruct;
using ::mlir::LLVM::getStridesFromShapeAndOrder;
using ::mlir::LLVM::getStructFromElements;
using ::mlir::LLVM::MMA16816ConversionHelper;
using ::mlir::LLVM::SharedMemoryObject;
using ::mlir::LLVM::shflSync;
using ::mlir::LLVM::storeShared;
using ::mlir::triton::gpu::BlockedEncodingAttr;
using ::mlir::triton::gpu::DotOperandEncodingAttr;
using ::mlir::triton::gpu::getElemsPerThread;
using ::mlir::triton::gpu::getOrder;
using ::mlir::triton::gpu::getShapePerCTA;
using ::mlir::triton::gpu::getSizePerThread;
using ::mlir::triton::gpu::getThreadsPerCTA;
using ::mlir::triton::gpu::MmaEncodingAttr;
using ::mlir::triton::gpu::SharedEncodingAttr;
using ::mlir::triton::gpu::SliceEncodingAttr;
namespace mlir {
namespace LLVM {
static StringRef getStructAttrsAttrName() { return "llvm.struct_attrs"; }
// A helper function for using printf in LLVM conversion.
void vprintf(StringRef msg, ValueRange args,
ConversionPatternRewriter &rewriter);
void vprintf_array(Value thread, ArrayRef<Value> arr, std::string info,
std::string elem_repr, ConversionPatternRewriter &builder);
} // namespace LLVM
} // namespace mlir
namespace {
namespace type = mlir::triton::type;
class TritonGPUToLLVMTypeConverter;
// TODO[goostavz]: Remove these methods after we have better debug log utilities
template <typename T>
void printArray(ArrayRef<T> array, const std::string &info) {
std::cout << info << ": ";
for (const T &e : array)
std::cout << e << ",";
std::cout << std::endl;
}
template <typename T> void printScalar(const T &e, const std::string &info) {
std::cout << info << ": " << e << std::endl;
}
// FuncOpConversion/FuncOpConversionBase is borrowed from
// https://github.com/llvm/llvm-project/blob/fae656b2dd80246c3c6f01e9c77c49560368752c/mlir/lib/Conversion/FuncToLLVM/FuncToLLVM.cpp#L276
// since it is not exposed on header files in mlir v14
// TODO(Superjomn) Remove the code when mlir v15.0 is included.
// All the rights are reserved by LLVM community.
/// Only retain those attributes that are not constructed by
/// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out argument
/// attributes.
void filterFuncAttributes(ArrayRef<NamedAttribute> attrs, bool filterArgAttrs,
SmallVectorImpl<NamedAttribute> &result) {
for (const auto &attr : attrs) {
if (attr.getName() == SymbolTable::getSymbolAttrName() ||
attr.getName() == FunctionOpInterface::getTypeAttrName() ||
attr.getName() == "std.varargs" ||
(filterArgAttrs &&
attr.getName() == FunctionOpInterface::getArgDictAttrName()))
continue;
result.push_back(attr);
}
}
/// Helper function for wrapping all attributes into a single DictionaryAttr
auto wrapAsStructAttrs(OpBuilder &b, ArrayAttr attrs) {
return DictionaryAttr::get(
b.getContext(), b.getNamedAttr(LLVM::getStructAttrsAttrName(), attrs));
}
struct FuncOpConversionBase : public ConvertOpToLLVMPattern<FuncOp> {
protected:
using ConvertOpToLLVMPattern<FuncOp>::ConvertOpToLLVMPattern;
// Convert input FuncOp to LLVMFuncOp by using the LLVMTypeConverter provided
// to this legalization pattern.
LLVM::LLVMFuncOp
convertFuncOpToLLVMFuncOp(FuncOp funcOp,
ConversionPatternRewriter &rewriter) const {
// Convert the original function arguments. They are converted using the
// LLVMTypeConverter provided to this legalization pattern.
auto varargsAttr = funcOp->getAttrOfType<BoolAttr>("func.varargs");
TypeConverter::SignatureConversion result(funcOp.getNumArguments());
auto llvmType = getTypeConverter()->convertFunctionSignature(
funcOp.getType(), varargsAttr && varargsAttr.getValue(), result);
if (!llvmType)
return nullptr;
// Propagate argument/result attributes to all converted arguments/result
// obtained after converting a given original argument/result.
SmallVector<NamedAttribute, 4> attributes;
filterFuncAttributes(funcOp->getAttrs(), /*filterArgAndResAttrs=*/true,
attributes);
if (ArrayAttr resAttrDicts = funcOp.getAllResultAttrs()) {
assert(!resAttrDicts.empty() && "expected array to be non-empty");
auto newResAttrDicts =
(funcOp.getNumResults() == 1)
? resAttrDicts
: rewriter.getArrayAttr(
{wrapAsStructAttrs(rewriter, resAttrDicts)});
attributes.push_back(rewriter.getNamedAttr(
FunctionOpInterface::getResultDictAttrName(), newResAttrDicts));
}
if (ArrayAttr argAttrDicts = funcOp.getAllArgAttrs()) {
SmallVector<Attribute, 4> newArgAttrs(
llvmType.cast<LLVM::LLVMFunctionType>().getNumParams());
for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) {
auto mapping = result.getInputMapping(i);
assert(mapping && "unexpected deletion of function argument");
for (size_t j = 0; j < mapping->size; ++j)
newArgAttrs[mapping->inputNo + j] = argAttrDicts[i];
}
attributes.push_back(
rewriter.getNamedAttr(FunctionOpInterface::getArgDictAttrName(),
rewriter.getArrayAttr(newArgAttrs)));
}
for (const auto &pair : llvm::enumerate(attributes)) {
if (pair.value().getName() == "llvm.linkage") {
attributes.erase(attributes.begin() + pair.index());
break;
}
}
// Create an LLVM function, use external linkage by default until MLIR
// functions have linkage.
LLVM::Linkage linkage = LLVM::Linkage::External;
if (funcOp->hasAttr("llvm.linkage")) {
auto attr =
funcOp->getAttr("llvm.linkage").dyn_cast<mlir::LLVM::LinkageAttr>();
if (!attr) {
funcOp->emitError()
<< "Contains llvm.linkage attribute not of type LLVM::LinkageAttr";
return nullptr;
}
linkage = attr.getLinkage();
}
auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
funcOp.getLoc(), funcOp.getName(), llvmType, linkage,
/*dsoLocal*/ false, attributes);
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), *typeConverter,
&result)))
return nullptr;
return newFuncOp;
}
};
/// FuncOp legalization pattern that converts MemRef arguments to pointers to
/// MemRef descriptors (LLVM struct data types) containing all the MemRef type
/// information.
struct FuncOpConversion : public FuncOpConversionBase {
FuncOpConversion(LLVMTypeConverter &converter, int numWarps,
PatternBenefit benefit)
: FuncOpConversionBase(converter, benefit), NumWarps(numWarps) {}
LogicalResult
matchAndRewrite(FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter);
if (!newFuncOp)
return failure();
auto ctx = funcOp->getContext();
// Set an attribute to indicate this function is a kernel entry.
newFuncOp->setAttr(NVVMMetadataField::Kernel,
rewriter.getIntegerAttr(type::u1Ty(ctx), 1));
// Set an attribute for maxntidx, it could be used in latter LLVM codegen
// for `nvvm.annotation` metadata.
newFuncOp->setAttr(NVVMMetadataField::MaxNTid,
rewriter.getIntegerAttr(i32_ty, 32 * NumWarps));
rewriter.eraseOp(funcOp);
return success();
}
private:
int NumWarps{0};
};
struct ReturnOpConversion : public ConvertOpToLLVMPattern<::mlir::ReturnOp> {
using ConvertOpToLLVMPattern<ReturnOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
unsigned numArguments = op.getNumOperands();
// Currently, Triton kernel function always return nothing.
// TODO(Superjomn) add support for non-inline device function
if (numArguments > 0) {
return rewriter.notifyMatchFailure(
op, "Only kernel function with nothing returned is supported.");
}
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), ValueRange(),
op->getAttrs());
return success();
}
};
// delinearize supposing order is [0, 1, .. , n]
template <typename T>
SmallVector<T> getMultiDimIndexImpl(T linearIndex, ArrayRef<T> shape) {
// shape: {a, b, c, d} -> accMul: {1, a, a*b, a*b*c}
size_t rank = shape.size();
T accMul = product(shape.drop_back());
T linearRemain = linearIndex;
SmallVector<T> multiDimIndex(rank);
for (int i = rank - 1; i >= 0; --i) {
multiDimIndex[i] = linearRemain / accMul;
linearRemain = linearRemain % accMul;
if (i != 0) {
accMul = accMul / shape[i - 1];
}
}
return multiDimIndex;
}
template <typename T>
SmallVector<T> getMultiDimIndex(T linearIndex, ArrayRef<T> shape,
ArrayRef<unsigned> order) {
size_t rank = shape.size();
assert(rank == order.size());
auto reordered = reorder(shape, order);
auto reorderedMultiDim = getMultiDimIndexImpl<T>(linearIndex, reordered);
SmallVector<T> multiDim(rank);
for (unsigned i = 0; i < rank; ++i) {
multiDim[order[i]] = reorderedMultiDim[i];
}
return multiDim;
}
// linearize supposing order is [0, 1, .. , n]
template <typename T>
T getLinearIndexImpl(ArrayRef<T> multiDimIndex, ArrayRef<T> shape) {
assert(multiDimIndex.size() == shape.size());
// shape: {a, b, c, d} -> accMul: {1, a, a*b, a*b*c}
size_t rank = shape.size();
T accMul = product(shape.drop_back());
T linearIndex = 0;
for (int i = rank - 1; i >= 0; --i) {
linearIndex += multiDimIndex[i] * accMul;
if (i != 0) {
accMul = accMul / shape[i - 1];
}
}
return linearIndex;
}
template <typename T>
T getLinearIndex(ArrayRef<T> multiDimIndex, ArrayRef<T> shape,
ArrayRef<unsigned> order) {
assert(shape.size() == order.size());
return getLinearIndexImpl<T>(reorder(multiDimIndex, order),
reorder(shape, order));
}
struct ConvertTritonGPUOpToLLVMPatternBase {
static Value
getStructFromSharedMemoryObject(Location loc,
const SharedMemoryObject &smemObj,
ConversionPatternRewriter &rewriter) {
auto elems = smemObj.getElems();
auto types = smemObj.getTypes();
auto structTy =
LLVM::LLVMStructType::getLiteral(rewriter.getContext(), types);
return getStructFromElements(loc, elems, rewriter, structTy);
}
};
template <typename SourceOp>
class ConvertTritonGPUOpToLLVMPattern
: public ConvertOpToLLVMPattern<SourceOp>,
public ConvertTritonGPUOpToLLVMPatternBase {
public:
using OpAdaptor = typename SourceOp::Adaptor;
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
const Allocation *allocation,
Value smem,
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit),
allocation(allocation), smem(smem) {}
Value getThreadId(ConversionPatternRewriter &rewriter, Location loc) const {
auto llvmIndexTy = this->getTypeConverter()->getIndexType();
auto cast = rewriter.create<UnrealizedConversionCastOp>(
loc, TypeRange{llvmIndexTy},
ValueRange{rewriter.create<::mlir::gpu::ThreadIdOp>(
loc, rewriter.getIndexType(), ::mlir::gpu::Dimension::x)});
Value threadId = cast.getResult(0);
return threadId;
}
Value createIndexConst(ConversionPatternRewriter &rewriter, Location loc,
int64_t value) const {
return rewriter.create<LLVM::ConstantOp>(
loc, this->getTypeConverter()->getIndexType(),
rewriter.getIntegerAttr(rewriter.getIndexType(), value));
}
// -----------------------------------------------------------------------
// Utilities
// -----------------------------------------------------------------------
// Convert an \param index to a multi-dim coordinate given \param shape and
// \param order.
SmallVector<Value> delinearize(ConversionPatternRewriter &rewriter,
Location loc, Value linear,
ArrayRef<unsigned> shape,
ArrayRef<unsigned> order) const {
unsigned rank = shape.size();
assert(rank == order.size());
auto reordered = reorder(shape, order);
auto reorderedMultiDim = delinearize(rewriter, loc, linear, reordered);
SmallVector<Value> multiDim(rank);
for (unsigned i = 0; i < rank; ++i) {
multiDim[order[i]] = reorderedMultiDim[i];
}
return multiDim;
}
SmallVector<Value> delinearize(ConversionPatternRewriter &rewriter,
Location loc, Value linear,
ArrayRef<unsigned> shape) const {
unsigned rank = shape.size();
assert(rank > 0);
SmallVector<Value> multiDim(rank);
if (rank == 1) {
multiDim[0] = linear;
} else {
Value remained = linear;
for (auto &&en : llvm::enumerate(shape.drop_back())) {
Value dimSize = idx_val(en.value());
multiDim[en.index()] = urem(remained, dimSize);
remained = udiv(remained, dimSize);
}
multiDim[rank - 1] = remained;
}
return multiDim;
}
Value linearize(ConversionPatternRewriter &rewriter, Location loc,
ArrayRef<Value> multiDim, ArrayRef<unsigned> shape,
ArrayRef<unsigned> order) const {
return linearize(rewriter, loc, reorder<Value>(multiDim, order),
reorder<unsigned>(shape, order));
}
Value linearize(ConversionPatternRewriter &rewriter, Location loc,
ArrayRef<Value> multiDim, ArrayRef<unsigned> shape) const {
int rank = multiDim.size();
Value linear = idx_val(0);
if (rank > 0) {
linear = multiDim.back();
for (auto [dim, shape] :
llvm::reverse(llvm::zip(multiDim.drop_back(), shape.drop_back()))) {
Value dimSize = idx_val(shape);
linear = add(mul(linear, dimSize), dim);
}
}
return linear;
}
Value dot(ConversionPatternRewriter &rewriter, Location loc,
ArrayRef<Value> offsets, ArrayRef<Value> strides) const {
assert(offsets.size() == strides.size());
Value ret = idx_val(0);
for (auto [offset, stride] : llvm::zip(offsets, strides)) {
ret = add(ret, mul(offset, stride));
}
return ret;
}
// -----------------------------------------------------------------------
// Blocked layout indices
// -----------------------------------------------------------------------
// Get an index-base for each dimension for a \param blocked_layout.
SmallVector<Value>
emitBaseIndexForBlockedLayout(Location loc,
ConversionPatternRewriter &rewriter,
const BlockedEncodingAttr &blocked_layout,
ArrayRef<int64_t> shape) const {
Value threadId = getThreadId(rewriter, loc);
Value warpSize = idx_val(32);
Value laneId = urem(threadId, warpSize);
Value warpId = udiv(threadId, warpSize);
auto sizePerThread = blocked_layout.getSizePerThread();
auto threadsPerWarp = blocked_layout.getThreadsPerWarp();
auto warpsPerCTA = blocked_layout.getWarpsPerCTA();
auto order = blocked_layout.getOrder();
unsigned rank = shape.size();
// delinearize threadId to get the base index
SmallVector<Value> multiDimWarpId =
delinearize(rewriter, loc, warpId, warpsPerCTA, order);
SmallVector<Value> multiDimThreadId =
delinearize(rewriter, loc, laneId, threadsPerWarp, order);
SmallVector<Value> multiDimBase(rank);
for (unsigned k = 0; k < rank; ++k) {
// Wrap around multiDimWarpId/multiDimThreadId incase
// shape[k] > shapePerCTA[k]
unsigned maxWarps =
ceil<unsigned>(shape[k], sizePerThread[k] * threadsPerWarp[k]);
unsigned maxThreads = ceil<unsigned>(shape[k], sizePerThread[k]);
multiDimWarpId[k] = urem(multiDimWarpId[k], idx_val(maxWarps));
multiDimThreadId[k] = urem(multiDimThreadId[k], idx_val(maxThreads));
// multiDimBase[k] = (multiDimThreadId[k] +
// multiDimWarpId[k] * threadsPerWarp[k]) *
// sizePerThread[k];
Value threadsPerWarpK = idx_val(threadsPerWarp[k]);
Value sizePerThreadK = idx_val(sizePerThread[k]);
multiDimBase[k] =
mul(sizePerThreadK, add(multiDimThreadId[k],
mul(multiDimWarpId[k], threadsPerWarpK)));
}
return multiDimBase;
}
SmallVector<SmallVector<unsigned>>
emitOffsetForBlockedLayout(const BlockedEncodingAttr &blockedLayout,
ArrayRef<int64_t> shape) const {
auto sizePerThread = blockedLayout.getSizePerThread();
auto threadsPerWarp = blockedLayout.getThreadsPerWarp();
auto warpsPerCTA = blockedLayout.getWarpsPerCTA();
auto order = blockedLayout.getOrder();
unsigned rank = shape.size();
SmallVector<unsigned> shapePerCTA = getShapePerCTA(blockedLayout);
SmallVector<unsigned> tilesPerDim(rank);
for (unsigned k = 0; k < rank; ++k)
tilesPerDim[k] = ceil<unsigned>(shape[k], shapePerCTA[k]);
SmallVector<SmallVector<unsigned>> offset(rank);
for (unsigned k = 0; k < rank; ++k) {
// 1 block in minimum if shape[k] is less than shapePerCTA[k]
for (unsigned blockOffset = 0; blockOffset < tilesPerDim[k];
++blockOffset)
for (unsigned warpOffset = 0; warpOffset < warpsPerCTA[k]; ++warpOffset)
for (unsigned threadOffset = 0; threadOffset < threadsPerWarp[k];
++threadOffset)
for (unsigned elemOffset = 0; elemOffset < sizePerThread[k];
++elemOffset)
offset[k].push_back(blockOffset * sizePerThread[k] *
threadsPerWarp[k] * warpsPerCTA[k] +
warpOffset * sizePerThread[k] *
threadsPerWarp[k] +
threadOffset * sizePerThread[k] + elemOffset);
}
unsigned elemsPerThread = blockedLayout.getElemsPerThread(shape);
unsigned totalSizePerThread = product<unsigned>(sizePerThread);
SmallVector<SmallVector<unsigned>> reorderedOffset(elemsPerThread);
for (unsigned n = 0; n < elemsPerThread; ++n) {
unsigned linearNanoTileId = n / totalSizePerThread;
unsigned linearNanoTileElemId = n % totalSizePerThread;
SmallVector<unsigned> multiDimNanoTileId =
getMultiDimIndex<unsigned>(linearNanoTileId, tilesPerDim, order);
SmallVector<unsigned> multiDimNanoTileElemId = getMultiDimIndex<unsigned>(
linearNanoTileElemId, sizePerThread, order);
for (unsigned k = 0; k < rank; ++k) {
unsigned reorderedMultiDimId =
multiDimNanoTileId[k] *
(sizePerThread[k] * threadsPerWarp[k] * warpsPerCTA[k]) +
multiDimNanoTileElemId[k];
reorderedOffset[n].push_back(offset[k][reorderedMultiDimId]);
}
}
return reorderedOffset;
}
// -----------------------------------------------------------------------
// Mma layout indices
// -----------------------------------------------------------------------
SmallVector<Value>
emitBaseIndexForMmaLayoutV1(Location loc, ConversionPatternRewriter &rewriter,
const MmaEncodingAttr &mmaLayout,
ArrayRef<int64_t> shape) const {
llvm_unreachable("emitIndicesForMmaLayoutV1 not implemented");
}
SmallVector<SmallVector<unsigned>>
emitOffsetForMmaLayoutV1(const MmaEncodingAttr &mmaLayout,
ArrayRef<int64_t> shape) const {
llvm_unreachable("emitOffsetForMmaLayoutV1 not implemented");
}
SmallVector<Value>
emitBaseIndexForMmaLayoutV2(Location loc, ConversionPatternRewriter &rewriter,
const MmaEncodingAttr &mmaLayout,
ArrayRef<int64_t> shape) const {
auto _warpsPerCTA = mmaLayout.getWarpsPerCTA();
assert(_warpsPerCTA.size() == 2);
SmallVector<Value> warpsPerCTA = {idx_val(_warpsPerCTA[0]),
idx_val(_warpsPerCTA[1])};
Value threadId = getThreadId(rewriter, loc);
Value warpSize = idx_val(32);
Value laneId = urem(threadId, warpSize);
Value warpId = udiv(threadId, warpSize);
Value warpId0 = urem(warpId, warpsPerCTA[0]);
Value warpId1 = urem(udiv(warpId, warpsPerCTA[0]), warpsPerCTA[1]);
Value offWarp0 = mul(warpId0, idx_val(16));
Value offWarp1 = mul(warpId1, idx_val(8));
SmallVector<Value> multiDimBase(2);
multiDimBase[0] = add(udiv(laneId, idx_val(4)), offWarp0);
multiDimBase[1] = add(mul(idx_val(2), urem(laneId, idx_val(4))), offWarp1);
return multiDimBase;
}
SmallVector<SmallVector<unsigned>>
emitOffsetForMmaLayoutV2(const MmaEncodingAttr &mmaLayout,
ArrayRef<int64_t> shape) const {
SmallVector<SmallVector<unsigned>> ret;
for (unsigned i = 0; i < shape[0]; i += getShapePerCTA(mmaLayout)[0]) {
for (unsigned j = 0; j < shape[1]; j += getShapePerCTA(mmaLayout)[1]) {
ret.push_back({i, j});
ret.push_back({i, j + 1});
ret.push_back({i + 8, j});
ret.push_back({i + 8, j + 1});
}
}
return ret;
}
// -----------------------------------------------------------------------
// Get offsets / indices for any layout
// -----------------------------------------------------------------------
SmallVector<Value> emitBaseIndexForLayout(Location loc,
ConversionPatternRewriter &rewriter,
const Attribute &layout,
ArrayRef<int64_t> shape) const {
if (auto blockedLayout = layout.dyn_cast<BlockedEncodingAttr>())
return emitBaseIndexForBlockedLayout(loc, rewriter, blockedLayout, shape);
if (auto mmaLayout = layout.dyn_cast<MmaEncodingAttr>()) {
if (mmaLayout.getVersion() == 1)
return emitBaseIndexForMmaLayoutV1(loc, rewriter, mmaLayout, shape);
if (mmaLayout.getVersion() == 2)
return emitBaseIndexForMmaLayoutV2(loc, rewriter, mmaLayout, shape);
}
llvm_unreachable("unsupported emitBaseIndexForLayout");
}
SmallVector<SmallVector<unsigned>>
emitOffsetForLayout(const Attribute &layout, ArrayRef<int64_t> shape) const {
if (auto blockedLayout = layout.dyn_cast<BlockedEncodingAttr>())
return emitOffsetForBlockedLayout(blockedLayout, shape);
if (auto mmaLayout = layout.dyn_cast<MmaEncodingAttr>()) {
if (mmaLayout.getVersion() == 1)
return emitOffsetForMmaLayoutV1(mmaLayout, shape);
if (mmaLayout.getVersion() == 2)
return emitOffsetForMmaLayoutV2(mmaLayout, shape);
}
llvm_unreachable("unsupported emitOffsetForLayout");
}
// Emit indices calculation within each ConversionPattern, and returns a
// [elemsPerThread X rank] index matrix.
// TODO: [phil] redundant indices commputation do not appear to hurt
// performance much, but they could still significantly slow down
// computations.
SmallVector<SmallVector<Value>> emitIndicesForDistributedLayout(
Location loc, ConversionPatternRewriter &rewriter,
const Attribute &layout, ArrayRef<int64_t> shape) const {
// step 1, delinearize threadId to get the base index
auto multiDimBase = emitBaseIndexForLayout(loc, rewriter, layout, shape);
// step 2, get offset of each element
auto offset = emitOffsetForLayout(layout, shape);
// step 3, add offset to base, and reorder the sequence of indices to
// guarantee that elems in the same sizePerThread are adjacent in order
unsigned rank = shape.size();
unsigned elemsPerThread = offset.size();
SmallVector<SmallVector<Value>> multiDimIdx(elemsPerThread,
SmallVector<Value>(rank));
for (unsigned n = 0; n < elemsPerThread; ++n)
for (unsigned k = 0; k < rank; ++k)
multiDimIdx[n][k] = add(multiDimBase[k], idx_val(offset[n][k]));
return multiDimIdx;
}
struct SmallVectorKeyInfo {
static unsigned getHashValue(const SmallVector<unsigned> &key) {
return llvm::hash_combine_range(key.begin(), key.end());
}
static bool isEqual(const SmallVector<unsigned> &lhs,
const SmallVector<unsigned> &rhs) {
return lhs == rhs;
}
static SmallVector<unsigned> getEmptyKey() {
return SmallVector<unsigned>();
}
static SmallVector<unsigned> getTombstoneKey() {
return {std::numeric_limits<unsigned>::max()};
}
};
SmallVector<SmallVector<Value>>
emitIndicesForSliceLayout(Location loc, ConversionPatternRewriter &rewriter,
const SliceEncodingAttr &sliceLayout,
ArrayRef<int64_t> shape) const {
auto parent = sliceLayout.getParent();
unsigned dim = sliceLayout.getDim();
size_t rank = shape.size();
auto parentIndices =
emitIndices(loc, rewriter, parent, sliceLayout.paddedShape(shape));
unsigned numIndices = parentIndices.size();
SmallVector<SmallVector<Value>> resultIndices;
for (unsigned i = 0; i < numIndices; ++i) {
SmallVector<Value> indices = parentIndices[i];
indices.erase(indices.begin() + dim);
resultIndices.push_back(indices);
}
return resultIndices;
}
// -----------------------------------------------------------------------
// Emit indices
// -----------------------------------------------------------------------
SmallVector<SmallVector<Value>> emitIndices(Location loc,
ConversionPatternRewriter &b,
const Attribute &layout,
ArrayRef<int64_t> shape) const {
if (auto blocked = layout.dyn_cast<BlockedEncodingAttr>()) {
return emitIndicesForDistributedLayout(loc, b, blocked, shape);
} else if (auto mma = layout.dyn_cast<MmaEncodingAttr>()) {
return emitIndicesForDistributedLayout(loc, b, mma, shape);
} else if (auto slice = layout.dyn_cast<SliceEncodingAttr>()) {
return emitIndicesForSliceLayout(loc, b, slice, shape);
} else {
assert(0 && "emitIndices for layouts other than blocked & slice not "
"implemented yet");
return {};
}
}
// -----------------------------------------------------------------------
// Shared memory utilities
// -----------------------------------------------------------------------
template <typename T>
Value getSharedMemoryBase(Location loc, ConversionPatternRewriter &rewriter,
T value) const {
auto ptrTy = LLVM::LLVMPointerType::get(
this->getTypeConverter()->convertType(rewriter.getI8Type()), 3);
auto bufferId = allocation->getBufferId(value);
assert(bufferId != Allocation::InvalidBufferId && "BufferId not found");
size_t offset = allocation->getOffset(bufferId);
Value offVal = idx_val(offset);
Value base = gep(ptrTy, smem, offVal);
return base;
}
protected:
const Allocation *allocation;
Value smem;
};
Value convertSplatLikeOpWithMmaLayout(const MmaEncodingAttr &layout,
Type resType, Type elemType,
Value constVal,
TypeConverter *typeConverter,
ConversionPatternRewriter &rewriter,
Location loc);
// Convert SplatOp or arith::ConstantOp with SplatElementsAttr to a
// LLVM::StructType value.
//
// @elemType: the element type in operand.
// @resType: the return type of the Splat-like op.
// @constVal: a LLVM::ConstantOp or other scalar value.
Value convertSplatLikeOp(Type elemType, Type resType, Value constVal,
TypeConverter *typeConverter,
ConversionPatternRewriter &rewriter, Location loc) {
auto tensorTy = resType.cast<RankedTensorType>();
if (tensorTy.getEncoding().isa<BlockedEncodingAttr>() ||
tensorTy.getEncoding().isa<SliceEncodingAttr>()) {
auto tensorTy = resType.cast<RankedTensorType>();
auto srcType = typeConverter->convertType(elemType);
auto llSrc = bitcast(constVal, srcType);
size_t elemsPerThread = getElemsPerThread(tensorTy);
llvm::SmallVector<Value> elems(elemsPerThread, llSrc);
llvm::SmallVector<Type> elemTypes(elems.size(), srcType);
auto structTy =
LLVM::LLVMStructType::getLiteral(rewriter.getContext(), elemTypes);
return getStructFromElements(loc, elems, rewriter, structTy);
} else if (auto mmaLayout =
tensorTy.getEncoding().dyn_cast<MmaEncodingAttr>()) {
return convertSplatLikeOpWithMmaLayout(
mmaLayout, resType, elemType, constVal, typeConverter, rewriter, loc);
} else
assert(false && "Unsupported layout found in ConvertSplatLikeOp");
return Value{};
}
struct SplatOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::SplatOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::SplatOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::SplatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto src = adaptor.src();
auto llStruct = convertSplatLikeOp(src.getType(), op.getType(), src,
getTypeConverter(), rewriter, loc);
rewriter.replaceOp(op, {llStruct});
return success();
}
};
// This pattern helps to convert arith::ConstantOp(with SplatElementsAttr),
// the logic is the same as triton::SplatOp, so the underlying implementation
// is reused.
struct ArithConstantSplatOpConversion
: public ConvertTritonGPUOpToLLVMPattern<arith::ConstantOp> {
using ConvertTritonGPUOpToLLVMPattern<
arith::ConstantOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(arith::ConstantOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto value = op.getValue();
if (!value.dyn_cast<SplatElementsAttr>())
return failure();
auto loc = op->getLoc();
LLVM::ConstantOp arithConstantOp;
auto values = op.getValue().dyn_cast<SplatElementsAttr>();
auto elemType = values.getElementType();
Attribute val;
if (type::isInt(elemType)) {
val = values.getValues<IntegerAttr>()[0];
} else if (type::isFloat(elemType)) {
val = values.getValues<FloatAttr>()[0];
} else {
llvm::errs() << "ArithConstantSplatOpConversion get unsupported type: "
<< value.getType() << "\n";
return failure();
}
auto constOp = rewriter.create<LLVM::ConstantOp>(loc, elemType, val);
auto llStruct = convertSplatLikeOp(elemType, op.getType(), constOp,
getTypeConverter(), rewriter, loc);
rewriter.replaceOp(op, llStruct);
return success();
}
};
// Contains some helper functions for both Load and Store conversions.
struct LoadStoreConversionBase : public ConvertTritonGPUOpToLLVMPatternBase {
explicit LoadStoreConversionBase(AxisInfoAnalysis &axisAnalysisPass)
: axisAnalysisPass(axisAnalysisPass) {}
// Get corresponding LLVM element values of \param value.
static SmallVector<Value> getLLVMElems(Value value, Value llValue,
ConversionPatternRewriter &rewriter,
Location loc) {
if (!value)
return {};
if (!llValue.getType().isa<LLVM::LLVMStructType>())
return {llValue};
// Here, we assume that all inputs should have a blockedLayout
auto valueVals = getElementsFromStruct(loc, llValue, rewriter);
return valueVals;
}
unsigned getVectorSize(Value ptr) const {
return axisAnalysisPass.getPtrVectorSize(ptr);
}
unsigned getMaskAlignment(Value mask) const {
return axisAnalysisPass.getMaskAlignment(mask);
}
protected:
AxisInfoAnalysis &axisAnalysisPass;
};
struct LoadOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::LoadOp>,
public LoadStoreConversionBase {
using ConvertTritonGPUOpToLLVMPattern<
triton::LoadOp>::ConvertTritonGPUOpToLLVMPattern;
LoadOpConversion(LLVMTypeConverter &converter,
AxisInfoAnalysis &axisAnalysisPass, PatternBenefit benefit)
: ConvertTritonGPUOpToLLVMPattern<triton::LoadOp>(converter, benefit),
LoadStoreConversionBase(axisAnalysisPass) {}
LogicalResult
matchAndRewrite(triton::LoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
// original values
Value ptr = op.ptr();
Value mask = op.mask();
Value other = op.other();
// adaptor values
Value llPtr = adaptor.ptr();
Value llMask = adaptor.mask();
Value llOther = adaptor.other();
// Determine the vectorization size
Type valueTy = op.getResult().getType();
Type valueElemTy =
typeConverter->convertType(getElementTypeOrSelf(valueTy));
unsigned vec = getVectorSize(ptr);
unsigned numElems = getElemsPerThread(ptr.getType());
if (llMask)
vec = std::min<size_t>(vec, getMaskAlignment(mask));
// Get the LLVM values for pointers
auto ptrElems = getLLVMElems(ptr, llPtr, rewriter, loc);
assert(ptrElems.size() == numElems);
// Get the LLVM values for mask
SmallVector<Value> maskElems;
if (llMask) {
maskElems = getLLVMElems(mask, llMask, rewriter, loc);
assert(maskElems.size() == numElems);
}
// Get the LLVM values for `other`
// TODO: (goostavz) handle when other is const but not splat, which
// should be rarely seen
bool otherIsSplatConstInt = false;
DenseElementsAttr constAttr;
int64_t splatVal = 0;
if (other && valueElemTy.isa<IntegerType>() &&
matchPattern(other, m_Constant(&constAttr)) && constAttr.isSplat()) {
otherIsSplatConstInt = true;
splatVal = constAttr.getSplatValue<APInt>().getSExtValue();
}
auto otherElems = getLLVMElems(other, llOther, rewriter, loc);
// vectorized iteration through all the pointer/mask/other elements
const int valueElemNbits =
std::max(8u, valueElemTy.getIntOrFloatBitWidth());
const int numVecs = numElems / vec;
SmallVector<Value> loadedVals;
for (size_t vecStart = 0; vecStart < numElems; vecStart += vec) {
// TODO: optimization when ptr is GEP with constant offset
size_t in_off = 0;
const size_t maxWordWidth = std::max<size_t>(32, valueElemNbits);
const size_t totalWidth = valueElemNbits * vec;
const size_t width = std::min(totalWidth, maxWordWidth);
const size_t nWords = std::max<size_t>(1, totalWidth / width);
const size_t wordNElems = width / valueElemNbits;
assert(wordNElems * nWords * numVecs == numElems);
// TODO(Superjomn) Add cache policy fields to StoreOp.
// TODO(Superjomn) Deal with cache policy here.
const bool hasL2EvictPolicy = false;
PTXBuilder ptxBuilder;
Value pred = mask ? maskElems[vecStart] : int_val(1, 1);
const std::string readConstraint =
(width == 64) ? "l" : ((width == 32) ? "r" : "c");
const std::string writeConstraint =
(width == 64) ? "=l" : ((width == 32) ? "=r" : "=c");
// prepare asm operands
auto *dstsOpr = ptxBuilder.newListOperand();
for (size_t wordIdx = 0; wordIdx < nWords; ++wordIdx) {
auto *opr = ptxBuilder.newOperand(writeConstraint); // =r operations
dstsOpr->listAppend(opr);
}
auto *addrOpr =
ptxBuilder.newAddrOperand(ptrElems[vecStart], "l", in_off);
// Define the instruction opcode
auto &ld = ptxBuilder.create<>("ld")
->o("volatile", op.isVolatile())
.global()
.o("ca", op.cache() == triton::CacheModifier::CA)
.o("cg", op.cache() == triton::CacheModifier::CG)
.o("L1::evict_first",
op.evict() == triton::EvictionPolicy::EVICT_FIRST)
.o("L1::evict_last",
op.evict() == triton::EvictionPolicy::EVICT_LAST)
.o("L1::cache_hint", hasL2EvictPolicy)
.v(nWords)
.b(width);
PTXBuilder::Operand *evictOpr{};
// Here lack a mlir::Value to bind to this operation, so disabled.
// if (has_l2_evict_policy)
// evictOpr = ptxBuilder.newOperand(l2Evict, "l");
if (!evictOpr)
ld(dstsOpr, addrOpr).predicate(pred, "b");
else
ld(dstsOpr, addrOpr, evictOpr).predicate(pred, "b");
if (other) {
for (size_t ii = 0; ii < nWords; ++ii) {
PTXInstr &mov =
ptxBuilder.create<>("mov")->o("u" + std::to_string(width));
size_t size = width / valueElemNbits;
auto vecTy = LLVM::getFixedVectorType(valueElemTy, size);
Value v = rewriter.create<LLVM::UndefOp>(loc, vecTy);
for (size_t s = 0; s < size; ++s) {
Value falseVal = otherElems[vecStart + ii * size + s];
Value sVal = createIndexAttrConstant(
rewriter, loc, this->getTypeConverter()->getIndexType(), s);
v = insert_element(vecTy, v, falseVal, sVal);
}
v = bitcast(v, IntegerType::get(getContext(), width));
PTXInstr::Operand *opr{};
if (otherIsSplatConstInt)
opr = ptxBuilder.newConstantOperand(splatVal);
else
opr = ptxBuilder.newOperand(v, readConstraint);
mov(dstsOpr->listGet(ii), opr).predicateNot(pred, "b");
}
}
// ---
// create inline ASM signature
// ---
SmallVector<Type> retTys(nWords, IntegerType::get(getContext(), width));
Type retTy = retTys.size() > 1
? LLVM::LLVMStructType::getLiteral(getContext(), retTys)
: retTys[0];
// TODO: if (has_l2_evict_policy)
// auto asmDialectAttr =
// LLVM::AsmDialectAttr::get(rewriter.getContext(),
// LLVM::AsmDialect::AD_ATT);
Value ret = ptxBuilder.launch(rewriter, loc, retTy);
// ---
// extract and store return values
// ---
SmallVector<Value> rets;
for (unsigned int ii = 0; ii < nWords; ++ii) {
Value curr;
if (retTy.isa<LLVM::LLVMStructType>()) {
curr = extract_val(IntegerType::get(getContext(), width), ret,
rewriter.getI64ArrayAttr(ii));
} else {
curr = ret;
}
curr = bitcast(curr, LLVM::getFixedVectorType(valueElemTy,
width / valueElemNbits));
rets.push_back(curr);
}
int tmp = width / valueElemNbits;
for (size_t ii = 0; ii < vec; ++ii) {
Value vecIdx = createIndexAttrConstant(
rewriter, loc, this->getTypeConverter()->getIndexType(), ii % tmp);
Value loaded = extract_element(valueElemTy, rets[ii / tmp], vecIdx);
loadedVals.push_back(loaded);
}
} // end vec
Type llvmResultStructTy = getTypeConverter()->convertType(valueTy);
Value resultStruct =
getStructFromElements(loc, loadedVals, rewriter, llvmResultStructTy);
rewriter.replaceOp(op, {resultStruct});
return success();
}
};
struct StoreOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::StoreOp>,
public LoadStoreConversionBase {
using ConvertTritonGPUOpToLLVMPattern<
triton::StoreOp>::ConvertTritonGPUOpToLLVMPattern;
StoreOpConversion(LLVMTypeConverter &converter,
AxisInfoAnalysis &axisAnalysisPass, PatternBenefit benefit)
: ConvertTritonGPUOpToLLVMPattern<triton::StoreOp>(converter, benefit),
LoadStoreConversionBase(axisAnalysisPass) {}
LogicalResult
matchAndRewrite(triton::StoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value ptr = op.ptr();
Value mask = op.mask();
Value value = op.value();
Value llPtr = adaptor.ptr();
Value llMask = adaptor.mask();
Value llValue = adaptor.value();
auto loc = op->getLoc();
MLIRContext *ctx = rewriter.getContext();
auto valueTy = value.getType();
Type valueElemTy =
typeConverter->convertType(getElementTypeOrSelf(valueTy));
unsigned vec = getVectorSize(ptr);
unsigned numElems = getElemsPerThread(ptr.getType());
auto ptrElems = getLLVMElems(ptr, llPtr, rewriter, loc);
auto valueElems = getLLVMElems(value, llValue, rewriter, loc);
assert(ptrElems.size() == valueElems.size());
// Determine the vectorization size
SmallVector<Value> maskElems;
if (llMask) {
maskElems = getLLVMElems(mask, llMask, rewriter, loc);
assert(valueElems.size() == maskElems.size());
unsigned maskAlign = getMaskAlignment(mask);
vec = std::min(vec, maskAlign);
}
const size_t dtsize =
std::max<int>(1, valueElemTy.getIntOrFloatBitWidth() / 8);
const size_t valueElemNbits = dtsize * 8;
const int numVecs = numElems / vec;
for (size_t vecStart = 0; vecStart < numElems; vecStart += vec) {
// TODO: optimization when ptr is AddPtr with constant offset
size_t in_off = 0;
const size_t maxWordWidth = std::max<size_t>(32, valueElemNbits);
const size_t totalWidth = valueElemNbits * vec;
const size_t width = std::min(totalWidth, maxWordWidth);
const size_t nWords = std::max<size_t>(1, totalWidth / width);
const size_t wordNElems = width / valueElemNbits;
assert(wordNElems * nWords * numVecs == numElems);
// TODO(Superjomn) Add cache policy fields to StoreOp.
// TODO(Superjomn) Deal with cache policy here.
Type valArgTy = IntegerType::get(ctx, width);
auto wordTy = vec_ty(valueElemTy, wordNElems);
SmallVector<std::pair<Value, std::string>> asmArgs;
for (size_t wordIdx = 0; wordIdx < nWords; ++wordIdx) {
// llWord is a width-len composition
Value llWord = rewriter.create<LLVM::UndefOp>(loc, wordTy);
// Insert each value element to the composition
for (size_t elemIdx = 0; elemIdx < wordNElems; ++elemIdx) {
const size_t elemOffset = vecStart + wordIdx * wordNElems + elemIdx;
assert(elemOffset < valueElems.size());
Value elem = valueElems[elemOffset];
if (elem.getType().isInteger(1))
elem = rewriter.create<LLVM::SExtOp>(loc, type::i8Ty(ctx), elem);
elem = bitcast(elem, valueElemTy);
Type u32Ty = typeConverter->convertType(type::u32Ty(ctx));
llWord =
insert_element(wordTy, llWord, elem,
rewriter.create<LLVM::ConstantOp>(
loc, u32Ty, IntegerAttr::get(u32Ty, elemIdx)));
}
llWord = bitcast(llWord, valArgTy);
std::string constraint =
(width == 64) ? "l" : ((width == 32) ? "r" : "c");
asmArgs.emplace_back(llWord, constraint);
}
// Prepare the PTX inline asm.
PTXBuilder ptxBuilder;
auto *asmArgList = ptxBuilder.newListOperand(asmArgs);
Value maskVal = llMask ? maskElems[vecStart] : int_val(1, 1);
auto *asmAddr =
ptxBuilder.newAddrOperand(ptrElems[vecStart], "l", in_off);
auto &ptxStoreInstr =
ptxBuilder.create<>("st")->global().v(nWords).b(width);
ptxStoreInstr(asmAddr, asmArgList).predicate(maskVal, "b");
Type boolTy = getTypeConverter()->convertType(rewriter.getIntegerType(1));
llvm::SmallVector<Type> argTys({boolTy, ptr.getType()});
argTys.insert(argTys.end(), nWords, valArgTy);
auto ASMReturnTy = void_ty(ctx);
ptxBuilder.launch(rewriter, loc, ASMReturnTy);
}
rewriter.eraseOp(op);
return success();
}
};
struct BroadcastOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::BroadcastOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::BroadcastOp>::ConvertTritonGPUOpToLLVMPattern;
// Following the order of indices in the legacy code, a broadcast of:
// [s(0), s(1) ... s(k-1), 1, s(k+1), s(k+2) ... s(n-1)]
// =>
// [s(0), s(1) ... s(k-1), s(k), s(k+1), s(k+2) ... s(n-1)]
//
// logically maps to a broadcast within a thread's scope:
// [cta(0)..cta(k-1), 1,cta(k+1)..cta(n-1),spt(0)..spt(k-1),
// 1,spt(k+1)..spt(n-1)]
// =>
// [cta(0)..cta(k-1),cta(k),cta(k+1)..cta(n-1),spt(0)..spt(k-1),spt(k),spt(k+1)..spt(n-1)]
//
// regardless of the order of the layout
//
LogicalResult
matchAndRewrite(triton::BroadcastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value src = adaptor.src();
Value result = op.result();
auto srcTy = op.src().getType().cast<RankedTensorType>();
auto resultTy = result.getType().cast<RankedTensorType>();
auto srcLayout = srcTy.getEncoding();
auto resultLayout = resultTy.getEncoding();
auto srcShape = srcTy.getShape();
auto resultShape = resultTy.getShape();
unsigned rank = srcTy.getRank();
assert(rank == resultTy.getRank());
auto order = triton::gpu::getOrder(srcLayout);
auto srcOffsets = emitOffsetForLayout(srcLayout, srcShape);
auto resultOffsets = emitOffsetForLayout(resultLayout, resultShape);
SmallVector<Value> srcVals = getElementsFromStruct(loc, src, rewriter);
DenseMap<SmallVector<unsigned>, Value, SmallVectorKeyInfo> srcValues;
for (size_t i = 0; i < srcOffsets.size(); i++) {
srcValues[srcOffsets[i]] = srcVals[i];
}
SmallVector<Value> resultVals;
for (size_t i = 0; i < resultOffsets.size(); i++) {
auto offset = resultOffsets[i];
for (size_t j = 0; j < srcShape.size(); j++)
if (srcShape[j] == 1)
offset[j] = 0;
resultVals.push_back(srcValues.lookup(offset));
}
auto llvmStructTy = getTypeConverter()->convertType(resultTy);
Value resultStruct =
getStructFromElements(loc, resultVals, rewriter, llvmStructTy);
rewriter.replaceOp(op, {resultStruct});
return success();
}
};
/// ====================== reduce codegen begin ==========================
struct ReduceOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::ReduceOp> {
public:
using ConvertTritonGPUOpToLLVMPattern<
triton::ReduceOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
private:
void accumulate(ConversionPatternRewriter &rewriter, Location loc,
RedOp redOp, Value &acc, Value cur, bool isFirst) const;
void accumulateWithIndex(ConversionPatternRewriter &rewriter, Location loc,
RedOp redOp, Value &acc, Value &accIndex, Value cur,
Value curIndex, bool isFirst) const;
// Use shared memory for reduction within warps and across warps
LogicalResult matchAndRewriteBasic(triton::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const;
// Use warp shuffle for reduction within warps and shared memory for data
// exchange across warps
LogicalResult matchAndRewriteFast(triton::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const;
};
LogicalResult
ReduceOpConversion::matchAndRewrite(triton::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (ReduceOpHelper(op).isFastReduction())
return matchAndRewriteFast(op, adaptor, rewriter);
return matchAndRewriteBasic(op, adaptor, rewriter);
}
void ReduceOpConversion::accumulate(ConversionPatternRewriter &rewriter,
Location loc, RedOp redOp, Value &acc,
Value cur, bool isFirst) const {
if (isFirst) {
acc = cur;
return;
}
switch (redOp) {
case RedOp::ADD:
acc = add(acc, cur);
break;
case RedOp::FADD:
acc = fadd(acc.getType(), acc, cur);
break;
case RedOp::MIN:
acc = smin(acc, cur);
break;
case RedOp::MAX:
acc = smax(acc, cur);
break;
case RedOp::UMIN:
acc = umin(acc, cur);
break;
case RedOp::UMAX:
acc = umax(acc, cur);
break;
case RedOp::FMIN:
acc = fmin(acc, cur);
break;
case RedOp::FMAX:
acc = fmax(acc, cur);
break;
case RedOp::XOR:
acc = xor_(acc, cur);
break;
case RedOp::ARGMIN:
case RedOp::ARGMAX:
case RedOp::ARGUMIN:
case RedOp::ARGUMAX:
case RedOp::ARGFMIN:
case RedOp::ARGFMAX:
llvm::report_fatal_error(
"This accumulate implementation is not for argmin / argmax");
default:
llvm::report_fatal_error("Unsupported reduce op");
}
}
void ReduceOpConversion::accumulateWithIndex(
ConversionPatternRewriter &rewriter, Location loc, RedOp redOp, Value &acc,
Value &accIndex, Value cur, Value curIndex, bool isFirst) const {
if (isFirst) {
acc = cur;
accIndex = curIndex;
return;
}
switch (redOp) {
case RedOp::ARGMIN:
accIndex =
select(icmp_slt(acc, cur), accIndex,
select(icmp_sgt(acc, cur), curIndex, smin(accIndex, curIndex)));
acc = smin(acc, cur);
break;
case RedOp::ARGMAX:
accIndex =
select(icmp_sgt(acc, cur), accIndex,
select(icmp_slt(acc, cur), curIndex, smin(accIndex, curIndex)));
acc = smax(acc, cur);
break;
case RedOp::ARGUMIN:
accIndex =
select(icmp_ult(acc, cur), accIndex,
select(icmp_ugt(acc, cur), curIndex, smin(accIndex, curIndex)));
acc = umin(acc, cur);
break;
case RedOp::ARGUMAX:
accIndex =
select(icmp_ugt(acc, cur), accIndex,
select(icmp_ult(acc, cur), curIndex, smin(accIndex, curIndex)));
acc = umax(acc, cur);
break;
case RedOp::ARGFMIN:
accIndex =
select(fcmp_olt(acc, cur), accIndex,
select(fcmp_ogt(acc, cur), curIndex, smin(accIndex, curIndex)));
acc = fmin(acc, cur);
break;
case RedOp::ARGFMAX:
accIndex =
select(fcmp_ogt(acc, cur), accIndex,
select(fcmp_olt(acc, cur), curIndex, smin(accIndex, curIndex)));
acc = fmax(acc, cur);
break;
case RedOp::ADD:
case RedOp::FADD:
case RedOp::MIN:
case RedOp::MAX:
case RedOp::UMIN:
case RedOp::UMAX:
case RedOp::FMIN:
case RedOp::FMAX:
case RedOp::XOR:
llvm::report_fatal_error(
"This accumulate implementation is only for argmin / argmax");
default:
llvm::report_fatal_error("Unsupported reduce op");
}
}
LogicalResult ReduceOpConversion::matchAndRewriteBasic(
triton::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
unsigned axis = op.axis();
bool withIndex = triton::ReduceOp::withIndex(op.redOp());
auto srcTy = op.operand().getType().cast<RankedTensorType>();
auto srcLayout = srcTy.getEncoding().cast<BlockedEncodingAttr>();
auto srcOrd = srcLayout.getOrder();
auto srcShape = srcTy.getShape();
auto llvmElemTy = getTypeConverter()->convertType(srcTy.getElementType());
auto llvmIndexTy = getTypeConverter()->getIndexType();
auto elemPtrTy = LLVM::LLVMPointerType::get(llvmElemTy, 3);
auto indexPtrTy = LLVM::LLVMPointerType::get(llvmIndexTy, 3);
Value smemBase = getSharedMemoryBase(loc, rewriter, op.getOperation());
smemBase = bitcast(smemBase, elemPtrTy);
ReduceOpHelper helper(op);
auto smemShape = helper.getScratchConfigBasic();
unsigned elems = product<unsigned>(smemShape);
Value indexSmemBase = gep(elemPtrTy, smemBase, i32_val(elems));
indexSmemBase = bitcast(indexSmemBase, indexPtrTy);
unsigned srcElems = getElemsPerThread(srcTy);
auto srcIndices = emitIndices(loc, rewriter, srcLayout, srcShape);
auto srcValues = getElementsFromStruct(loc, adaptor.operand(), rewriter);
SmallVector<SmallVector<unsigned>> offset =
emitOffsetForBlockedLayout(srcLayout, srcShape);
std::map<SmallVector<unsigned>, Value> accs;
std::map<SmallVector<unsigned>, Value> accIndices;
std::map<SmallVector<unsigned>, SmallVector<Value>> indices;
// reduce within threads
for (unsigned i = 0; i < srcElems; ++i) {
SmallVector<unsigned> key = offset[i];
key[axis] = 0;
bool isFirst = accs.find(key) == accs.end();
if (!withIndex) {
accumulate(rewriter, loc, op.redOp(), accs[key], srcValues[i], isFirst);
} else {
Value curIndex = srcIndices[i][axis];
accumulateWithIndex(rewriter, loc, op.redOp(), accs[key], accIndices[key],
srcValues[i], curIndex, isFirst);
}
if (isFirst)
indices[key] = srcIndices[i];
}
// cached int32 constants
std::map<int, Value> ints;
ints[0] = i32_val(0);
for (int N = smemShape[axis] / 2; N > 0; N >>= 1)
ints[N] = i32_val(N);
Value sizePerThread = i32_val(srcLayout.getSizePerThread()[axis]);
// reduce across threads
for (auto it : accs) {
const SmallVector<unsigned> &key = it.first;
Value acc = it.second;
Value accIndex;
if (withIndex)
accIndex = accIndices[key];
SmallVector<Value> writeIdx = indices[key];
writeIdx[axis] = udiv(writeIdx[axis], sizePerThread);
Value writeOffset = linearize(rewriter, loc, writeIdx, smemShape, srcOrd);
Value writePtr = gep(elemPtrTy, smemBase, writeOffset);
Value indexWritePtr = gep(indexPtrTy, indexSmemBase, writeOffset);
store(acc, writePtr);
if (withIndex)
store(accIndex, indexWritePtr);
SmallVector<Value> readIdx(writeIdx.size(), ints[0]);
for (int N = smemShape[axis] / 2; N > 0; N >>= 1) {
readIdx[axis] = ints[N];
Value readMask = icmp_slt(writeIdx[axis], ints[N]);
Value readOffset =
select(readMask, linearize(rewriter, loc, readIdx, smemShape, srcOrd),
ints[0]);
Value readPtr = gep(elemPtrTy, writePtr, readOffset);
barrier();
if (!withIndex) {
Value cur = load(readPtr);
accumulate(rewriter, loc, op.redOp(), acc, cur, false);
store(acc, writePtr);
} else {
Value cur = load(readPtr);
Value indexReadPtr = gep(indexPtrTy, indexWritePtr, readOffset);
Value curIndex = load(indexReadPtr);
accumulateWithIndex(rewriter, loc, op.redOp(), acc, accIndex, cur,
curIndex, false);
store(acc, writePtr);
store(accIndex, indexWritePtr);
}
}
}
barrier();
// set output values
if (auto resultTy = op.getType().dyn_cast<RankedTensorType>()) {
// nd-tensor where n >= 1
auto resultLayout = resultTy.getEncoding();
auto resultShape = resultTy.getShape();
unsigned resultElems = getElemsPerThread(resultTy);
auto resultIndices = emitIndices(loc, rewriter, resultLayout, resultShape);
assert(resultIndices.size() == resultElems);
SmallVector<Value> resultVals(resultElems);
for (unsigned i = 0; i < resultElems; ++i) {
SmallVector<Value> readIdx = resultIndices[i];
readIdx.insert(readIdx.begin() + axis, ints[0]);
Value readOffset = linearize(rewriter, loc, readIdx, smemShape, srcOrd);
Value readPtr = gep(elemPtrTy, smemBase, readOffset);
Value indexReadPtr = gep(indexPtrTy, indexSmemBase, readOffset);
resultVals[i] = withIndex ? load(indexReadPtr) : load(readPtr);
}
SmallVector<Type> resultTypes(resultElems,
withIndex ? llvmIndexTy : llvmElemTy);
Type structTy =
LLVM::LLVMStructType::getLiteral(this->getContext(), resultTypes);
Value ret = getStructFromElements(loc, resultVals, rewriter, structTy);
rewriter.replaceOp(op, ret);
} else {
// 0d-tensor -> scalar
Value resultVal = withIndex ? load(indexSmemBase) : load(smemBase);
rewriter.replaceOp(op, resultVal);
}
return success();
}
LogicalResult ReduceOpConversion::matchAndRewriteFast(
triton::ReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op->getLoc();
unsigned axis = adaptor.axis();
bool withIndex = triton::ReduceOp::withIndex(op.redOp());
auto srcTy = op.operand().getType().cast<RankedTensorType>();
auto srcLayout = srcTy.getEncoding();
auto srcShape = srcTy.getShape();
auto srcRank = srcTy.getRank();
auto order = getOrder(srcLayout);
auto threadsPerWarp = triton::gpu::getThreadsPerWarp(srcLayout);
auto warpsPerCTA = triton::gpu::getWarpsPerCTA(srcLayout);
auto llvmElemTy = getTypeConverter()->convertType(srcTy.getElementType());
auto llvmIndexTy = getTypeConverter()->getIndexType();
auto elemPtrTy = LLVM::LLVMPointerType::get(llvmElemTy, 3);
auto indexPtrTy = LLVM::LLVMPointerType::get(llvmIndexTy, 3);
Value smemBase = getSharedMemoryBase(loc, rewriter, op.getOperation());
smemBase = bitcast(smemBase, elemPtrTy);
ReduceOpHelper helper(op);
auto smemShapes = helper.getScratchConfigsFast();
unsigned elems = product<unsigned>(smemShapes[0]);
unsigned maxElems = std::max(elems, product<unsigned>(smemShapes[1]));
Value indexSmemBase = gep(elemPtrTy, smemBase, i32_val(maxElems));
indexSmemBase = bitcast(indexSmemBase, indexPtrTy);
unsigned sizeIntraWarps = helper.getIntraWarpSize();
unsigned sizeInterWarps = helper.getInterWarpSize();
unsigned srcElems = getElemsPerThread(srcTy);
auto srcIndices = emitIndices(loc, rewriter, srcLayout, srcShape);
auto srcValues = getElementsFromStruct(loc, adaptor.operand(), rewriter);
SmallVector<SmallVector<unsigned>> offset =
emitOffsetForLayout(srcLayout, srcShape);
std::map<SmallVector<unsigned>, Value> accs;
std::map<SmallVector<unsigned>, Value> accIndices;
std::map<SmallVector<unsigned>, SmallVector<Value>> indices;
// reduce within threads
for (unsigned i = 0; i < srcElems; ++i) {
SmallVector<unsigned> key = offset[i];
key[axis] = 0;
bool isFirst = accs.find(key) == accs.end();
if (!withIndex) {
accumulate(rewriter, loc, op.redOp(), accs[key], srcValues[i], isFirst);
} else {
Value curIndex = srcIndices[i][axis];
accumulateWithIndex(rewriter, loc, op.redOp(), accs[key], accIndices[key],
srcValues[i], curIndex, isFirst);
}
if (isFirst)
indices[key] = srcIndices[i];
}
Value threadId = getThreadId(rewriter, loc);
Value warpSize = i32_val(32);
Value warpId = udiv(threadId, warpSize);
Value laneId = urem(threadId, warpSize);
SmallVector<Value> multiDimLaneId =
delinearize(rewriter, loc, laneId, threadsPerWarp, order);
SmallVector<Value> multiDimWarpId =
delinearize(rewriter, loc, warpId, warpsPerCTA, order);
Value laneIdAxis = multiDimLaneId[axis];
Value warpIdAxis = multiDimWarpId[axis];
Value zero = i32_val(0);
Value laneZero = icmp_eq(laneIdAxis, zero);
Value warpZero = icmp_eq(warpIdAxis, zero);
for (auto it : accs) {
const SmallVector<unsigned> &key = it.first;
Value acc = it.second;
Value accIndex;
if (withIndex)
accIndex = accIndices[key];
// reduce within warps
for (unsigned N = sizeIntraWarps / 2; N > 0; N >>= 1) {
Value shfl = shflSync(loc, rewriter, acc, N);
if (!withIndex) {
accumulate(rewriter, loc, op.redOp(), acc, shfl, false);
} else {
Value shflIndex = shflSync(loc, rewriter, accIndex, N);
accumulateWithIndex(rewriter, loc, op.redOp(), acc, accIndex, shfl,
shflIndex, false);
}
}
SmallVector<Value> writeIdx = indices[key];
writeIdx[axis] = (sizeInterWarps == 1) ? zero : warpIdAxis;
Value writeOffset =
linearize(rewriter, loc, writeIdx, smemShapes[0], order);
Value writePtr = gep(elemPtrTy, smemBase, writeOffset);
storeShared(rewriter, loc, writePtr, acc, laneZero);
if (withIndex) {
Value indexWritePtr = gep(indexPtrTy, indexSmemBase, writeOffset);
storeShared(rewriter, loc, indexWritePtr, accIndex, laneZero);
}
}
barrier();
// the second round of shuffle reduction
// now the problem size: sizeInterWarps, s1, s2, .. , sn
// where sizeInterWarps is 2^m
//
// each thread needs to process:
// elemsPerThread = sizeInterWarps * s1 * s2 .. Sn / numThreads
unsigned numThreads =
product<unsigned>(triton::gpu::getWarpsPerCTA(srcLayout)) * 32;
unsigned elemsPerThread = std::max<unsigned>(elems / numThreads, 1);
Value readOffset = threadId;
for (unsigned round = 0; round < elemsPerThread; ++round) {
Value readPtr = gep(elemPtrTy, smemBase, readOffset);
// FIXME(Qingyi): need predicate icmp_slt(threadId, i32_val(sizeInerWarps))
Value acc = load(readPtr);
Value accIndex;
if (withIndex) {
Value readIndexPtr = gep(indexPtrTy, indexSmemBase, readOffset);
accIndex = load(readIndexPtr);
}
for (unsigned N = sizeInterWarps / 2; N > 0; N >>= 1) {
Value shfl = shflSync(loc, rewriter, acc, N);
if (!withIndex) {
accumulate(rewriter, loc, op.redOp(), acc, shfl, false);
} else {
Value shflIndex = shflSync(loc, rewriter, accIndex, N);
accumulateWithIndex(rewriter, loc, op.redOp(), acc, accIndex, shfl,
shflIndex, false);
}
}
// only the first thread in each sizeInterWarps is writing
Value writeOffset = readOffset;
Value writePtr = gep(elemPtrTy, smemBase, writeOffset);
Value threadIsNeeded = icmp_slt(threadId, i32_val(elems));
Value laneIdModSizeInterWarps = urem(laneId, i32_val(sizeInterWarps));
Value laneIdModSizeInterWarpsIsZero =
icmp_eq(laneIdModSizeInterWarps, zero);
Value pred = and_(threadIsNeeded, laneIdModSizeInterWarpsIsZero);
storeShared(rewriter, loc, writePtr, acc, pred);
if (withIndex) {
Value writeIndexPtr = gep(indexPtrTy, indexSmemBase, writeOffset);
storeShared(rewriter, loc, writeIndexPtr, accIndex, pred);
}
if (round != elemsPerThread - 1) {
readOffset = add(readOffset, i32_val(numThreads));
}
}
// We could avoid this barrier in some of the layouts, however this is not
// the general case. TODO: optimize the barrier incase the layouts are
// accepted.
barrier();
// set output values
if (auto resultTy = op.getType().dyn_cast<RankedTensorType>()) {
// nd-tensor where n >= 1
auto resultLayout = resultTy.getEncoding().cast<SliceEncodingAttr>();
auto resultShape = resultTy.getShape();
unsigned resultElems = getElemsPerThread(resultTy);
auto resultIndices = emitIndices(loc, rewriter, resultLayout, resultShape);
assert(resultIndices.size() == resultElems);
SmallVector<Value> resultVals(resultElems);
for (size_t i = 0; i < resultElems; ++i) {
SmallVector<Value> readIdx = resultIndices[i];
readIdx.insert(readIdx.begin() + axis, i32_val(0));
Value readOffset =
linearize(rewriter, loc, readIdx, smemShapes[0], order);
Value readPtr = gep(elemPtrTy, smemBase, readOffset);
Value indexReadPtr = gep(indexPtrTy, indexSmemBase, readOffset);
resultVals[i] = withIndex ? load(indexReadPtr) : load(readPtr);
}
SmallVector<Type> resultTypes(resultElems,
withIndex ? llvmIndexTy : llvmElemTy);
Type structTy =
LLVM::LLVMStructType::getLiteral(this->getContext(), resultTypes);
Value ret = getStructFromElements(loc, resultVals, rewriter, structTy);
rewriter.replaceOp(op, ret);
} else {
// 0d-tensor -> scalar
Value resultVal = withIndex ? load(indexSmemBase) : load(smemBase);
rewriter.replaceOp(op, resultVal);
}
return success();
}
/// ====================== reduce codegen end ==========================
template <typename SourceOp>
struct ViewLikeOpConversion : public ConvertTritonGPUOpToLLVMPattern<SourceOp> {
using OpAdaptor = typename SourceOp::Adaptor;
explicit ViewLikeOpConversion(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: ConvertTritonGPUOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
LogicalResult
matchAndRewrite(SourceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// We cannot directly run
// `rewriter.replaceOp(op, adaptor.src())`
// due to MLIR's restrictions
Location loc = op->getLoc();
auto resultTy = op.getType().template cast<RankedTensorType>();
unsigned elems = getElemsPerThread(resultTy);
Type elemTy =
this->getTypeConverter()->convertType(resultTy.getElementType());
SmallVector<Type> types(elems, elemTy);
Type structTy = LLVM::LLVMStructType::getLiteral(this->getContext(), types);
auto vals = getElementsFromStruct(loc, adaptor.src(), rewriter);
Value view = getStructFromElements(loc, vals, rewriter, structTy);
rewriter.replaceOp(op, view);
return success();
}
};
struct PrintfOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::PrintfOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::PrintfOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::PrintfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
SmallVector<Value, 16> operands;
for (auto operand : adaptor.getOperands()) {
auto sub_operands = getElementsFromStruct(loc, operand, rewriter);
for (auto elem : sub_operands) {
operands.push_back(elem);
}
}
std::string formatStr;
llvm::raw_string_ostream os(formatStr);
os << op.prefix();
if (!operands.empty()) {
os << getFormatSubstr(operands[0]);
}
for (size_t i = 1; i < operands.size(); ++i) {
os << ", " << getFormatSubstr(operands[i]);
}
llPrintf(formatStr, operands, rewriter);
rewriter.eraseOp(op);
return success();
}
// get format specific for each input value
// currently support pointer, i8, i16, i32, i64, f16, bf16, f32, f64
std::string getFormatSubstr(Value value) const {
Type type = value.getType();
if (type.isa<LLVM::LLVMPointerType>()) {
return "%p";
} else if (type.isBF16() || type.isF16() || type.isF32() || type.isF64()) {
return "%f";
} else if (type.isSignedInteger()) {
return "%i";
} else if (type.isUnsignedInteger() || type.isSignlessInteger()) {
return "%u";
}
assert(false && "not supported type");
return "";
}
// declare vprintf(i8*, i8*) as external function
static LLVM::LLVMFuncOp
getVprintfDeclaration(ConversionPatternRewriter &rewriter) {
auto moduleOp =
rewriter.getBlock()->getParent()->getParentOfType<ModuleOp>();
StringRef funcName("vprintf");
Operation *funcOp = moduleOp.lookupSymbol(funcName);
if (funcOp)
return cast<LLVM::LLVMFuncOp>(*funcOp);
auto *context = rewriter.getContext();
SmallVector<Type> argsType{ptr_ty(IntegerType::get(context, 8)),
ptr_ty(IntegerType::get(context, 8))};
auto funcType = LLVM::LLVMFunctionType::get(i32_ty, argsType);
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
return rewriter.create<LLVM::LLVMFuncOp>(UnknownLoc::get(context), funcName,
funcType);
}
// extend integer to int32, extend float to float64
// this comes from vprintf alignment requirements.
static std::pair<Type, Value>
promoteValue(ConversionPatternRewriter &rewriter, Value value) {
auto *context = rewriter.getContext();
auto type = value.getType();
Value newOp = value;
Type newType = type;
bool bUnsigned = type.isUnsignedInteger();
if (type.isIntOrIndex() && type.getIntOrFloatBitWidth() < 32) {
if (bUnsigned) {
newType = ui32_ty;
newOp = rewriter.create<LLVM::ZExtOp>(UnknownLoc::get(context), newType,
value);
} else {
newType = i32_ty;
newOp = rewriter.create<LLVM::SExtOp>(UnknownLoc::get(context), newType,
value);
}
} else if (type.isBF16() || type.isF16() || type.isF32()) {
newType = f64_ty;
newOp = rewriter.create<LLVM::FPExtOp>(UnknownLoc::get(context), newType,
value);
}
return {newType, newOp};
}
static void llPrintf(StringRef msg, ValueRange args,
ConversionPatternRewriter &rewriter) {
static const char formatStringPrefix[] = "printfFormat_";
assert(!msg.empty() && "printf with empty string not support");
Type int8Ptr = ptr_ty(i8_ty);
auto *context = rewriter.getContext();
auto moduleOp =
rewriter.getBlock()->getParent()->getParentOfType<ModuleOp>();
auto funcOp = getVprintfDeclaration(rewriter);
Value one = rewriter.create<LLVM::ConstantOp>(
UnknownLoc::get(context), i32_ty, rewriter.getI32IntegerAttr(1));
Value zero = rewriter.create<LLVM::ConstantOp>(
UnknownLoc::get(context), i32_ty, rewriter.getI32IntegerAttr(0));
unsigned stringNumber = 0;
SmallString<16> stringConstName;
do {
stringConstName.clear();
(formatStringPrefix + Twine(stringNumber++)).toStringRef(stringConstName);
} while (moduleOp.lookupSymbol(stringConstName));
llvm::SmallString<64> formatString(msg);
formatString.push_back('\n');
formatString.push_back('\0');
size_t formatStringSize = formatString.size_in_bytes();
auto globalType = LLVM::LLVMArrayType::get(i8_ty, formatStringSize);
LLVM::GlobalOp global;
{
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
global = rewriter.create<LLVM::GlobalOp>(
UnknownLoc::get(context), globalType,
/*isConstant=*/true, LLVM::Linkage::Internal, stringConstName,
rewriter.getStringAttr(formatString));
}
Value globalPtr =
rewriter.create<LLVM::AddressOfOp>(UnknownLoc::get(context), global);
Value stringStart = rewriter.create<LLVM::GEPOp>(
UnknownLoc::get(context), int8Ptr, globalPtr,
SmallVector<Value>({zero, zero}));
Value bufferPtr =
rewriter.create<LLVM::NullOp>(UnknownLoc::get(context), int8Ptr);
SmallVector<Value, 16> newArgs;
if (args.size() >= 1) {
SmallVector<Type> argTypes;
for (auto arg : args) {
Type newType;
Value newArg;
std::tie(newType, newArg) = promoteValue(rewriter, arg);
argTypes.push_back(newType);
newArgs.push_back(newArg);
}
Type structTy = LLVM::LLVMStructType::getLiteral(context, argTypes);
auto allocated = rewriter.create<LLVM::AllocaOp>(UnknownLoc::get(context),
ptr_ty(structTy), one,
/*alignment=*/0);
for (const auto &entry : llvm::enumerate(newArgs)) {
auto index = rewriter.create<LLVM::ConstantOp>(
UnknownLoc::get(context), i32_ty,
rewriter.getI32IntegerAttr(entry.index()));
auto fieldPtr = rewriter.create<LLVM::GEPOp>(
UnknownLoc::get(context), ptr_ty(argTypes[entry.index()]),
allocated, ArrayRef<Value>{zero, index});
rewriter.create<LLVM::StoreOp>(UnknownLoc::get(context), entry.value(),
fieldPtr);
}
bufferPtr = rewriter.create<LLVM::BitcastOp>(UnknownLoc::get(context),
int8Ptr, allocated);
}
SmallVector<Value> operands{stringStart, bufferPtr};
rewriter.create<LLVM::CallOp>(UnknownLoc::get(context), funcOp, operands);
}
};
struct MakeRangeOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::MakeRangeOp> {
MakeRangeOpConversion(LLVMTypeConverter &converter, PatternBenefit benefit)
: ConvertTritonGPUOpToLLVMPattern<triton::MakeRangeOp>(converter,
benefit) {}
LogicalResult
matchAndRewrite(triton::MakeRangeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto rankedTy = op.result().getType().dyn_cast<RankedTensorType>();
auto shape = rankedTy.getShape();
auto layout = rankedTy.getEncoding();
auto elemTy = rankedTy.getElementType();
assert(elemTy.isInteger(32));
Value start = createIndexAttrConstant(rewriter, loc, elemTy, op.start());
auto idxs = emitIndices(loc, rewriter, layout, shape);
unsigned elems = idxs.size();
SmallVector<Value> retVals(elems);
// TODO: slice layout has more elements than expected.
// Unexpected behavior for make range, but genereally ok when followed by
// expand dims + broadcast. very weird behavior otherwise potentially.
for (const auto multiDim : llvm::enumerate(idxs)) {
assert(multiDim.value().size() == 1);
retVals[multiDim.index()] = add(multiDim.value()[0], start);
}
SmallVector<Type> types(elems, elemTy);
Type structTy = LLVM::LLVMStructType::getLiteral(getContext(), types);
Value result = getStructFromElements(loc, retVals, rewriter, structTy);
rewriter.replaceOp(op, result);
return success();
}
};
struct GetProgramIdOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::GetProgramIdOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::GetProgramIdOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::GetProgramIdOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
assert(op.axis() < 3);
Value blockId = rewriter.create<::mlir::gpu::BlockIdOp>(
loc, rewriter.getIndexType(), dims[op.axis()]);
auto llvmIndexTy = getTypeConverter()->getIndexType();
rewriter.replaceOpWithNewOp<UnrealizedConversionCastOp>(
op, TypeRange{llvmIndexTy}, ValueRange{blockId});
return success();
}
static constexpr mlir::gpu::Dimension dims[] = {mlir::gpu::Dimension::x,
mlir::gpu::Dimension::y,
mlir::gpu::Dimension::z};
};
struct GetNumProgramsOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::GetNumProgramsOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::GetNumProgramsOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::GetNumProgramsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
assert(op.axis() < 3);
Value blockId = rewriter.create<::mlir::gpu::GridDimOp>(
loc, rewriter.getIndexType(), dims[op.axis()]);
auto llvmIndexTy = getTypeConverter()->getIndexType();
rewriter.replaceOpWithNewOp<UnrealizedConversionCastOp>(
op, TypeRange{llvmIndexTy}, ValueRange{blockId});
return success();
}
static constexpr mlir::gpu::Dimension dims[] = {mlir::gpu::Dimension::x,
mlir::gpu::Dimension::y,
mlir::gpu::Dimension::z};
};
struct AddPtrOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::AddPtrOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::AddPtrOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::AddPtrOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto resultTy = op.getType();
auto resultTensorTy = resultTy.dyn_cast<RankedTensorType>();
if (resultTensorTy) {
unsigned elems = getElemsPerThread(resultTy);
Type elemTy =
getTypeConverter()->convertType(resultTensorTy.getElementType());
SmallVector<Type> types(elems, elemTy);
Type structTy = LLVM::LLVMStructType::getLiteral(getContext(), types);
auto ptrs = getElementsFromStruct(loc, adaptor.ptr(), rewriter);
auto offsets = getElementsFromStruct(loc, adaptor.offset(), rewriter);
SmallVector<Value> resultVals(elems);
for (unsigned i = 0; i < elems; ++i) {
resultVals[i] = gep(elemTy, ptrs[i], offsets[i]);
}
Value view = getStructFromElements(loc, resultVals, rewriter, structTy);
rewriter.replaceOp(op, view);
} else {
assert(resultTy.isa<triton::PointerType>());
Type llResultTy = getTypeConverter()->convertType(resultTy);
Value result = gep(llResultTy, adaptor.ptr(), adaptor.offset());
rewriter.replaceOp(op, result);
}
return success();
}
};
struct AllocTensorOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::gpu::AllocTensorOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::gpu::AllocTensorOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::gpu::AllocTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
Value smemBase = getSharedMemoryBase(loc, rewriter, op.getResult());
auto resultTy = op.getType().dyn_cast<RankedTensorType>();
auto llvmElemTy =
getTypeConverter()->convertType(resultTy.getElementType());
auto elemPtrTy = ptr_ty(llvmElemTy, 3);
smemBase = bitcast(smemBase, elemPtrTy);
auto order = resultTy.getEncoding().cast<SharedEncodingAttr>().getOrder();
// workaround for 3D tensors
// TODO: We need to modify the pipeline pass to give a proper shared
// encoding to 3D tensors
SmallVector<unsigned> newOrder;
if (resultTy.getShape().size() == 3)
newOrder = {1 + order[0], 1 + order[1], 0};
else
newOrder = SmallVector<unsigned>(order.begin(), order.end());
auto smemObj = SharedMemoryObject(smemBase, resultTy.getShape(), newOrder,
loc, rewriter);
auto retVal = getStructFromSharedMemoryObject(loc, smemObj, rewriter);
rewriter.replaceOp(op, retVal);
return success();
}
};
struct ExtractSliceOpConversion
: public ConvertTritonGPUOpToLLVMPattern<tensor::ExtractSliceOp> {
using ConvertTritonGPUOpToLLVMPattern<
tensor::ExtractSliceOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(tensor::ExtractSliceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// %dst = extract_slice %src[%offsets]
Location loc = op->getLoc();
auto srcTy = op.source().getType().dyn_cast<RankedTensorType>();
auto srcLayout = srcTy.getEncoding().dyn_cast<SharedEncodingAttr>();
assert(srcLayout && "Unexpected resultLayout in ExtractSliceOpConversion");
assert(op.hasUnitStride() &&
"Only unit stride supported by ExtractSliceOpConversion");
// newBase = base + offset
// Triton support either static and dynamic offsets
auto smemObj =
getSharedMemoryObjectFromStruct(loc, adaptor.source(), rewriter);
SmallVector<Value, 4> opOffsetVals;
SmallVector<Value, 4> offsetVals;
auto mixedOffsets = op.getMixedOffsets();
for (auto i = 0; i < mixedOffsets.size(); ++i) {
if (op.isDynamicOffset(i))
opOffsetVals.emplace_back(adaptor.offsets()[i]);
else
opOffsetVals.emplace_back(i32_val(op.getStaticOffset(i)));
offsetVals.emplace_back(add(smemObj.offsets[i], opOffsetVals[i]));
}
// Compute the offset based on the original strides of the shared memory
// object
auto offset = dot(rewriter, loc, opOffsetVals, smemObj.strides);
// newShape = rank_reduce(shape)
// Triton only supports static tensor sizes
SmallVector<Value, 4> strideVals;
for (auto i = 0; i < op.static_sizes().size(); ++i) {
if (op.getStaticSize(i) == 1) {
offsetVals.erase(offsetVals.begin() + i);
} else {
strideVals.emplace_back(smemObj.strides[i]);
}
}
// llvm::outs() << "extract slice\n";
// llvm::outs() << strideVals[0] << " " << smemObj.strides[1] << "\n";
// llvm::outs() << strideVals[1] << " " << smemObj.strides[2] << "\n";
auto llvmElemTy = getTypeConverter()->convertType(srcTy.getElementType());
auto elemPtrTy = ptr_ty(llvmElemTy, 3);
auto resTy = op.getType().dyn_cast<RankedTensorType>();
smemObj = SharedMemoryObject(gep(elemPtrTy, smemObj.base, offset),
strideVals, offsetVals);
auto retVal = getStructFromSharedMemoryObject(loc, smemObj, rewriter);
rewriter.replaceOp(op, retVal);
return success();
}
};
struct FpToFpOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::FpToFpOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::FpToFpOp>::ConvertTritonGPUOpToLLVMPattern;
static SmallVector<Value>
convertFp8x4ToFp16x4(Location loc, ConversionPatternRewriter &rewriter,
const Value &v0, const Value &v1, const Value &v2,
const Value &v3) {
auto ctx = rewriter.getContext();
auto fp8x4VecTy = vec_ty(i8_ty, 4);
Value fp8x4Vec = undef(fp8x4VecTy);
fp8x4Vec = insert_element(fp8x4VecTy, fp8x4Vec, v0, i32_val(0));
fp8x4Vec = insert_element(fp8x4VecTy, fp8x4Vec, v1, i32_val(1));
fp8x4Vec = insert_element(fp8x4VecTy, fp8x4Vec, v2, i32_val(2));
fp8x4Vec = insert_element(fp8x4VecTy, fp8x4Vec, v3, i32_val(3));
fp8x4Vec = bitcast(fp8x4Vec, i32_ty);
PTXBuilder builder;
auto *ptxAsm = "{ \n"
".reg .b32 a<2>, b<2>; \n"
"prmt.b32 a0, 0, $2, 0x5040; \n"
"prmt.b32 a1, 0, $2, 0x7060; \n"
"lop3.b32 b0, a0, 0x7fff7fff, 0, 0xc0; \n"
"lop3.b32 b1, a1, 0x7fff7fff, 0, 0xc0; \n"
"shr.b32 b0, b0, 1; \n"
"shr.b32 b1, b1, 1; \n"
"lop3.b32 $0, b0, 0x80008000, a0, 0xf8; \n"
"lop3.b32 $1, b1, 0x80008000, a1, 0xf8; \n"
"}";
auto &call = *builder.create(ptxAsm);
auto *o0 = builder.newOperand("=r");
auto *o1 = builder.newOperand("=r");
auto *i = builder.newOperand(fp8x4Vec, "r");
call({o0, o1, i}, /* onlyAttachMLIRArgs */ true);
auto fp16x2VecTy = vec_ty(f16_ty, 2);
auto fp16x2x2StructTy =
struct_ty(SmallVector<Type>{fp16x2VecTy, fp16x2VecTy});
auto fp16x2x2Struct =
builder.launch(rewriter, loc, fp16x2x2StructTy, false);
auto fp16x2Vec0 =
extract_val(fp16x2VecTy, fp16x2x2Struct, rewriter.getI32ArrayAttr({0}));
auto fp16x2Vec1 =
extract_val(fp16x2VecTy, fp16x2x2Struct, rewriter.getI32ArrayAttr({1}));
return {extract_element(f16_ty, fp16x2Vec0, i32_val(0)),
extract_element(f16_ty, fp16x2Vec0, i32_val(1)),
extract_element(f16_ty, fp16x2Vec1, i32_val(0)),
extract_element(f16_ty, fp16x2Vec1, i32_val(1))};
}
static SmallVector<Value>
convertFp16x4ToFp8x4(Location loc, ConversionPatternRewriter &rewriter,
const Value &v0, const Value &v1, const Value &v2,
const Value &v3) {
auto ctx = rewriter.getContext();
auto fp16x2VecTy = vec_ty(f16_ty, 2);
Value fp16x2Vec0 = undef(fp16x2VecTy);
Value fp16x2Vec1 = undef(fp16x2VecTy);
fp16x2Vec0 = insert_element(fp16x2VecTy, fp16x2Vec0, v0, i32_val(0));
fp16x2Vec0 = insert_element(fp16x2VecTy, fp16x2Vec0, v1, i32_val(1));
fp16x2Vec1 = insert_element(fp16x2VecTy, fp16x2Vec1, v2, i32_val(0));
fp16x2Vec1 = insert_element(fp16x2VecTy, fp16x2Vec1, v3, i32_val(1));
fp16x2Vec0 = bitcast(fp16x2Vec0, i32_ty);
fp16x2Vec1 = bitcast(fp16x2Vec1, i32_ty);
PTXBuilder builder;
auto *ptxAsm = "{ \n"
".reg .b32 a<2>, b<2>; \n"
"shl.b32 a0, $1, 1; \n"
"shl.b32 a1, $2, 1; \n"
"lop3.b32 a0, a0, 0x7fff7fff, 0, 0xc0; \n"
"lop3.b32 a1, a1, 0x7fff7fff, 0, 0xc0; \n"
"add.u32 a0, a0, 0x00800080; \n"
"add.u32 a1, a1, 0x00800080; \n"
"lop3.b32 b0, $1, 0x80008000, a0, 0xea; \n"
"lop3.b32 b1, $2, 0x80008000, a1, 0xea; \n"
"prmt.b32 $0, b0, b1, 0x7531; \n"
"}";
auto &call = *builder.create(ptxAsm);
auto *o = builder.newOperand("=r");
auto *i0 = builder.newOperand(fp16x2Vec0, "r");
auto *i1 = builder.newOperand(fp16x2Vec1, "r");
call({o, i0, i1}, /* onlyAttachMLIRArgs */ true);
auto fp8x4VecTy = vec_ty(i8_ty, 4);
auto fp8x4Vec = builder.launch(rewriter, loc, fp8x4VecTy, false);
return {extract_element(i8_ty, fp8x4Vec, i32_val(0)),
extract_element(i8_ty, fp8x4Vec, i32_val(1)),
extract_element(i8_ty, fp8x4Vec, i32_val(2)),
extract_element(i8_ty, fp8x4Vec, i32_val(3))};
}
static SmallVector<Value>
convertFp8x4ToBf16x4(Location loc, ConversionPatternRewriter &rewriter,
const Value &v0, const Value &v1, const Value &v2,
const Value &v3) {
auto ctx = rewriter.getContext();
auto fp8x4VecTy = vec_ty(i8_ty, 4);
Value fp8x4Vec = undef(fp8x4VecTy);
fp8x4Vec = insert_element(fp8x4VecTy, fp8x4Vec, v0, i32_val(0));
fp8x4Vec = insert_element(fp8x4VecTy, fp8x4Vec, v1, i32_val(1));
fp8x4Vec = insert_element(fp8x4VecTy, fp8x4Vec, v2, i32_val(2));
fp8x4Vec = insert_element(fp8x4VecTy, fp8x4Vec, v3, i32_val(3));
fp8x4Vec = bitcast(fp8x4Vec, i32_ty);
PTXBuilder builder;
auto *ptxAsm = "{ \n"
".reg .b32 a<2>, sign<2>, nosign<2>, b<2>; \n"
"prmt.b32 a0, 0, $2, 0x5040; \n"
"prmt.b32 a1, 0, $2, 0x7060; \n"
"and.b32 sign0, a0, 0x80008000; \n"
"and.b32 sign1, a1, 0x80008000; \n"
"and.b32 nosign0, a0, 0x7fff7fff; \n"
"and.b32 nosign1, a1, 0x7fff7fff; \n"
"shr.b32 nosign0, nosign0, 4; \n"
"shr.b32 nosign1, nosign1, 4; \n"
"add.u32 nosign0, nosign0, 0x38003800; \n"
"add.u32 nosign1, nosign1, 0x38003800; \n"
"or.b32 $0, sign0, nosign0; \n"
"or.b32 $1, sign1, nosign1; \n"
"}";
auto &call = *builder.create(ptxAsm);
auto *o0 = builder.newOperand("=r");
auto *o1 = builder.newOperand("=r");
auto *i = builder.newOperand(fp8x4Vec, "r");
call({o0, o1, i}, /* onlyAttachMLIRArgs */ true);
auto bf16x2VecTy = vec_ty(bf16_ty, 2);
auto bf16x2x2StructTy =
struct_ty(SmallVector<Type>{bf16x2VecTy, bf16x2VecTy});
auto bf16x2x2Struct =
builder.launch(rewriter, loc, bf16x2x2StructTy, false);
auto bf16x2Vec0 =
extract_val(bf16x2VecTy, bf16x2x2Struct, rewriter.getI32ArrayAttr({0}));
auto bf16x2Vec1 =
extract_val(bf16x2VecTy, bf16x2x2Struct, rewriter.getI32ArrayAttr({1}));
return {extract_element(bf16_ty, bf16x2Vec0, i32_val(0)),
extract_element(bf16_ty, bf16x2Vec0, i32_val(1)),
extract_element(bf16_ty, bf16x2Vec1, i32_val(0)),
extract_element(bf16_ty, bf16x2Vec1, i32_val(1))};
}
static SmallVector<Value>
convertBf16x4ToFp8x4(Location loc, ConversionPatternRewriter &rewriter,
const Value &v0, const Value &v1, const Value &v2,
const Value &v3) {
auto ctx = rewriter.getContext();
auto bf16x2VecTy = vec_ty(bf16_ty, 2);
Value bf16x2Vec0 = undef(bf16x2VecTy);
Value bf16x2Vec1 = undef(bf16x2VecTy);
bf16x2Vec0 = insert_element(bf16x2VecTy, bf16x2Vec0, v0, i32_val(0));
bf16x2Vec0 = insert_element(bf16x2VecTy, bf16x2Vec0, v1, i32_val(1));
bf16x2Vec1 = insert_element(bf16x2VecTy, bf16x2Vec1, v2, i32_val(0));
bf16x2Vec1 = insert_element(bf16x2VecTy, bf16x2Vec1, v3, i32_val(1));
bf16x2Vec0 = bitcast(bf16x2Vec0, i32_ty);
bf16x2Vec1 = bitcast(bf16x2Vec1, i32_ty);
PTXBuilder builder;
auto *ptxAsm = "{ \n"
".reg .u32 sign, sign<2>, nosign, nosign<2>; \n"
".reg .u32 fp8_min, fp8_max, rn_, zero; \n"
"mov.u32 fp8_min, 0x38003800; \n"
"mov.u32 fp8_max, 0x3ff03ff0; \n"
"mov.u32 rn_, 0x80008; \n"
"mov.u32 zero, 0; \n"
"and.b32 sign0, $1, 0x80008000; \n"
"and.b32 sign1, $2, 0x80008000; \n"
"prmt.b32 sign, sign0, sign1, 0x7531; \n"
"and.b32 nosign0, $1, 0x7fff7fff; \n"
"and.b32 nosign1, $2, 0x7fff7fff; \n"
".reg .u32 nosign_0_<2>, nosign_1_<2>; \n"
"and.b32 nosign_0_0, nosign0, 0xffff0000; \n"
"max.u32 nosign_0_0, nosign_0_0, 0x38000000; \n"
"min.u32 nosign_0_0, nosign_0_0, 0x3ff00000; \n"
"and.b32 nosign_0_1, nosign0, 0x0000ffff; \n"
"max.u32 nosign_0_1, nosign_0_1, 0x3800; \n"
"min.u32 nosign_0_1, nosign_0_1, 0x3ff0; \n"
"or.b32 nosign0, nosign_0_0, nosign_0_1; \n"
"and.b32 nosign_1_0, nosign1, 0xffff0000; \n"
"max.u32 nosign_1_0, nosign_1_0, 0x38000000; \n"
"min.u32 nosign_1_0, nosign_1_0, 0x3ff00000; \n"
"and.b32 nosign_1_1, nosign1, 0x0000ffff; \n"
"max.u32 nosign_1_1, nosign_1_1, 0x3800; \n"
"min.u32 nosign_1_1, nosign_1_1, 0x3ff0; \n"
"or.b32 nosign1, nosign_1_0, nosign_1_1; \n"
"add.u32 nosign0, nosign0, rn_; \n"
"add.u32 nosign1, nosign1, rn_; \n"
"sub.u32 nosign0, nosign0, 0x38003800; \n"
"sub.u32 nosign1, nosign1, 0x38003800; \n"
"shr.u32 nosign0, nosign0, 4; \n"
"shr.u32 nosign1, nosign1, 4; \n"
"prmt.b32 nosign, nosign0, nosign1, 0x6420; \n"
"or.b32 $0, nosign, sign; \n"
"}";
auto &call = *builder.create(ptxAsm);
auto *o = builder.newOperand("=r");
auto *i0 = builder.newOperand(bf16x2Vec0, "r");
auto *i1 = builder.newOperand(bf16x2Vec1, "r");
call({o, i0, i1}, /* onlyAttachMLIRArgs */ true);
auto fp8x4VecTy = vec_ty(i8_ty, 4);
auto fp8x4Vec = builder.launch(rewriter, loc, fp8x4VecTy, false);
return {extract_element(i8_ty, fp8x4Vec, i32_val(0)),
extract_element(i8_ty, fp8x4Vec, i32_val(1)),
extract_element(i8_ty, fp8x4Vec, i32_val(2)),
extract_element(i8_ty, fp8x4Vec, i32_val(3))};
}
static SmallVector<Value>
convertFp8x4ToFp32x4(Location loc, ConversionPatternRewriter &rewriter,
const Value &v0, const Value &v1, const Value &v2,
const Value &v3) {
auto fp16Values = convertFp8x4ToFp16x4(loc, rewriter, v0, v1, v2, v3);
return {rewriter.create<LLVM::FPExtOp>(loc, f32_ty, fp16Values[0]),
rewriter.create<LLVM::FPExtOp>(loc, f32_ty, fp16Values[1]),
rewriter.create<LLVM::FPExtOp>(loc, f32_ty, fp16Values[2]),
rewriter.create<LLVM::FPExtOp>(loc, f32_ty, fp16Values[3])};
}
static SmallVector<Value>
convertFp32x4ToFp8x4(Location loc, ConversionPatternRewriter &rewriter,
const Value &v0, const Value &v1, const Value &v2,
const Value &v3) {
auto c0 = rewriter.create<LLVM::FPTruncOp>(loc, f16_ty, v0);
auto c1 = rewriter.create<LLVM::FPTruncOp>(loc, f16_ty, v1);
auto c2 = rewriter.create<LLVM::FPTruncOp>(loc, f16_ty, v2);
auto c3 = rewriter.create<LLVM::FPTruncOp>(loc, f16_ty, v3);
return convertFp16x4ToFp8x4(loc, rewriter, c0, c1, c2, c3);
}
static SmallVector<Value>
convertFp8x4ToFp64x4(Location loc, ConversionPatternRewriter &rewriter,
const Value &v0, const Value &v1, const Value &v2,
const Value &v3) {
auto fp16Values = convertFp8x4ToFp16x4(loc, rewriter, v0, v1, v2, v3);
return {rewriter.create<LLVM::FPExtOp>(loc, f64_ty, fp16Values[0]),
rewriter.create<LLVM::FPExtOp>(loc, f64_ty, fp16Values[1]),
rewriter.create<LLVM::FPExtOp>(loc, f64_ty, fp16Values[2]),
rewriter.create<LLVM::FPExtOp>(loc, f64_ty, fp16Values[3])};
}
static SmallVector<Value>
convertFp64x4ToFp8x4(Location loc, ConversionPatternRewriter &rewriter,
const Value &v0, const Value &v1, const Value &v2,
const Value &v3) {
auto c0 = rewriter.create<LLVM::FPTruncOp>(loc, f16_ty, v0);
auto c1 = rewriter.create<LLVM::FPTruncOp>(loc, f16_ty, v1);
auto c2 = rewriter.create<LLVM::FPTruncOp>(loc, f16_ty, v2);
auto c3 = rewriter.create<LLVM::FPTruncOp>(loc, f16_ty, v3);
return convertFp16x4ToFp8x4(loc, rewriter, c0, c1, c2, c3);
}
LogicalResult
matchAndRewrite(triton::FpToFpOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto srcTensorType = op.from().getType().cast<mlir::RankedTensorType>();
auto dstTensorType = op.result().getType().cast<mlir::RankedTensorType>();
auto srcEltType = srcTensorType.getElementType();
auto dstEltType = dstTensorType.getElementType();
assert(srcEltType.isa<triton::Float8Type>() ||
dstEltType.isa<triton::Float8Type>());
auto convertedDstTensorType =
this->getTypeConverter()->convertType(dstTensorType);
auto convertedDstEleType =
this->getTypeConverter()->convertType(dstEltType);
// Select convertor
std::function<SmallVector<Value>(Location, ConversionPatternRewriter &,
const Value &, const Value &,
const Value &, const Value &)>
convertor;
if (srcEltType.isa<triton::Float8Type>() && dstEltType.isF16()) {
convertor = convertFp8x4ToFp16x4;
} else if (srcEltType.isF16() && dstEltType.isa<triton::Float8Type>()) {
convertor = convertFp16x4ToFp8x4;
} else if (srcEltType.isa<triton::Float8Type>() && dstEltType.isBF16()) {
convertor = convertFp8x4ToBf16x4;
} else if (srcEltType.isBF16() && dstEltType.isa<triton::Float8Type>()) {
convertor = convertBf16x4ToFp8x4;
} else if (srcEltType.isa<triton::Float8Type>() && dstEltType.isF32()) {
convertor = convertFp8x4ToFp32x4;
} else if (srcEltType.isF32() && dstEltType.isa<triton::Float8Type>()) {
convertor = convertFp32x4ToFp8x4;
} else if (srcEltType.isa<triton::Float8Type>() && dstEltType.isF64()) {
convertor = convertFp8x4ToFp64x4;
} else if (srcEltType.isF64() && dstEltType.isa<triton::Float8Type>()) {
convertor = convertFp64x4ToFp8x4;
} else {
assert(false && "unsupported type casting");
}
// Vectorized casting
auto loc = op->getLoc();
auto elems = getElemsPerThread(dstTensorType);
assert(elems % 4 == 0 &&
"FP8 casting only support tensors with 4-aligned sizes");
auto elements = getElementsFromStruct(loc, adaptor.from(), rewriter);
SmallVector<Value> resultVals;
for (size_t i = 0; i < elems; i += 4) {
auto converted = convertor(loc, rewriter, elements[i], elements[i + 1],
elements[i + 2], elements[i + 3]);
resultVals.append(converted);
}
assert(resultVals.size() == elems);
auto result = getStructFromElements(loc, resultVals, rewriter,
convertedDstTensorType);
rewriter.replaceOp(op, result);
return success();
}
};
// A CRTP style of base class.
template <typename SourceOp, typename ConcreteT>
class ElementwiseOpConversionBase
: public ConvertTritonGPUOpToLLVMPattern<SourceOp> {
public:
using OpAdaptor = typename SourceOp::Adaptor;
explicit ElementwiseOpConversionBase(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: ConvertTritonGPUOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
LogicalResult
matchAndRewrite(SourceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto resultTy = op.getType();
Location loc = op->getLoc();
unsigned elems = getElemsPerThread(resultTy);
auto resultElementTy = getElementTypeOrSelf(resultTy);
Type elemTy = this->getTypeConverter()->convertType(resultElementTy);
SmallVector<Type> types(elems, elemTy);
Type structTy = this->getTypeConverter()->convertType(resultTy);
auto *concreteThis = static_cast<const ConcreteT *>(this);
auto operands = getOperands(rewriter, adaptor, elems, loc);
SmallVector<Value> resultVals(elems);
for (unsigned i = 0; i < elems; ++i) {
resultVals[i] = concreteThis->createDestOp(op, adaptor, rewriter, elemTy,
operands[i], loc);
if (!bool(resultVals[i]))
return failure();
}
Value view = getStructFromElements(loc, resultVals, rewriter, structTy);
rewriter.replaceOp(op, view);
return success();
}
protected:
SmallVector<SmallVector<Value>>
getOperands(ConversionPatternRewriter &rewriter, OpAdaptor adaptor,
const unsigned elems, Location loc) const {
SmallVector<SmallVector<Value>> operands(elems);
for (auto operand : adaptor.getOperands()) {
auto sub_operands = getElementsFromStruct(loc, operand, rewriter);
for (size_t i = 0; i < elems; ++i) {
operands[i].push_back(sub_operands[i]);
}
}
return operands;
}
};
template <typename SourceOp, typename DestOp>
struct ElementwiseOpConversion
: public ElementwiseOpConversionBase<
SourceOp, ElementwiseOpConversion<SourceOp, DestOp>> {
using Base =
ElementwiseOpConversionBase<SourceOp,
ElementwiseOpConversion<SourceOp, DestOp>>;
using Base::Base;
using OpAdaptor = typename Base::OpAdaptor;
explicit ElementwiseOpConversion(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: ElementwiseOpConversionBase<SourceOp, ElementwiseOpConversion>(
typeConverter, benefit) {}
// An interface to support variant DestOp builder.
DestOp createDestOp(SourceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy,
ValueRange operands, Location loc) const {
return rewriter.create<DestOp>(loc, elemTy, operands,
adaptor.getAttributes().getValue());
}
};
//
// comparisons
//
struct CmpIOpConversion
: public ElementwiseOpConversionBase<triton::gpu::CmpIOp,
CmpIOpConversion> {
using Base =
ElementwiseOpConversionBase<triton::gpu::CmpIOp, CmpIOpConversion>;
using Base::Base;
using Adaptor = typename Base::OpAdaptor;
// An interface to support variant DestOp builder.
LLVM::ICmpOp createDestOp(triton::gpu::CmpIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy,
ValueRange operands, Location loc) const {
return rewriter.create<LLVM::ICmpOp>(
loc, elemTy, ArithCmpIPredicteToLLVM(op.predicate()), operands[0],
operands[1]);
}
static LLVM::ICmpPredicate
ArithCmpIPredicteToLLVM(arith::CmpIPredicate predicate) {
switch (predicate) {
#define __PRED_ENUM(item__) \
case arith::CmpIPredicate::item__: \
return LLVM::ICmpPredicate::item__
__PRED_ENUM(eq);
__PRED_ENUM(ne);
__PRED_ENUM(sgt);
__PRED_ENUM(sge);
__PRED_ENUM(slt);
__PRED_ENUM(sle);
__PRED_ENUM(ugt);
__PRED_ENUM(uge);
__PRED_ENUM(ult);
__PRED_ENUM(ule);
#undef __PRED_ENUM
}
return LLVM::ICmpPredicate::eq;
}
};
struct CmpFOpConversion
: public ElementwiseOpConversionBase<triton::gpu::CmpFOp,
CmpFOpConversion> {
using Base =
ElementwiseOpConversionBase<triton::gpu::CmpFOp, CmpFOpConversion>;
using Base::Base;
using Adaptor = typename Base::OpAdaptor;
// An interface to support variant DestOp builder.
static LLVM::FCmpOp createDestOp(triton::gpu::CmpFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
Type elemTy, ValueRange operands,
Location loc) {
return rewriter.create<LLVM::FCmpOp>(
loc, elemTy, ArithCmpFPredicteToLLVM(op.predicate()), operands[0],
operands[1]);
}
static LLVM::FCmpPredicate
ArithCmpFPredicteToLLVM(arith::CmpFPredicate predicate) {
switch (predicate) {
#define __PRED_ENUM(item__, item1__) \
case arith::CmpFPredicate::item__: \
return LLVM::FCmpPredicate::item1__
__PRED_ENUM(OEQ, oeq);
__PRED_ENUM(ONE, one);
__PRED_ENUM(OGT, ogt);
__PRED_ENUM(OGE, oge);
__PRED_ENUM(OLT, olt);
__PRED_ENUM(OLE, ole);
__PRED_ENUM(ORD, ord);
__PRED_ENUM(UEQ, ueq);
__PRED_ENUM(UGT, ugt);
__PRED_ENUM(UGE, uge);
__PRED_ENUM(ULT, ult);
__PRED_ENUM(ULE, ule);
__PRED_ENUM(UNE, une);
__PRED_ENUM(UNO, uno);
__PRED_ENUM(AlwaysTrue, _true);
__PRED_ENUM(AlwaysFalse, _false);
#undef __PRED_ENUM
}
return LLVM::FCmpPredicate::_true;
}
};
struct ConvertLayoutOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::gpu::ConvertLayoutOp> {
public:
using ConvertTritonGPUOpToLLVMPattern<
triton::gpu::ConvertLayoutOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::gpu::ConvertLayoutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value src = op.src();
Value dst = op.result();
auto srcTy = src.getType().cast<RankedTensorType>();
auto dstTy = dst.getType().cast<RankedTensorType>();
Attribute srcLayout = srcTy.getEncoding();
Attribute dstLayout = dstTy.getEncoding();
if (srcLayout.isa<BlockedEncodingAttr>() &&
dstLayout.isa<SharedEncodingAttr>()) {
return lowerBlockedToShared(op, adaptor, rewriter);
}
if (srcLayout.isa<SharedEncodingAttr>() &&
dstLayout.isa<DotOperandEncodingAttr>()) {
return lowerSharedToDotOperand(op, adaptor, rewriter);
}
if ((srcLayout.isa<BlockedEncodingAttr>() ||
srcLayout.isa<MmaEncodingAttr>() ||
srcLayout.isa<SliceEncodingAttr>()) &&
(dstLayout.isa<BlockedEncodingAttr>() ||
dstLayout.isa<MmaEncodingAttr>() ||
dstLayout.isa<SliceEncodingAttr>())) {
return lowerDistributedToDistributed(op, adaptor, rewriter);
}
// dot_op<opIdx=0, parent=#mma> = #mma
// when #mma = MmaEncoding<version=2, warpsPerCTA=[..., 1]>
if (srcLayout.isa<MmaEncodingAttr>() &&
dstLayout.isa<DotOperandEncodingAttr>()) {
auto srcMmaLayout = srcLayout.cast<MmaEncodingAttr>();
auto dstDotLayout = dstLayout.cast<DotOperandEncodingAttr>();
if (srcMmaLayout.getWarpsPerCTA()[1] == 1 &&
dstDotLayout.getOpIdx() == 0 &&
dstDotLayout.getParent() == srcMmaLayout) {
// get source values
Location loc = op->getLoc();
auto vals = getElementsFromStruct(loc, adaptor.src(), rewriter);
unsigned elems = getElemsPerThread(srcTy);
Type elemTy =
this->getTypeConverter()->convertType(srcTy.getElementType());
// for the destination type, we need to pack values together
// so they can be consumed by tensor core operations
unsigned vecSize =
std::max<unsigned>(32 / elemTy.getIntOrFloatBitWidth(), 1);
Type vecTy = vec_ty(elemTy, vecSize);
SmallVector<Type> types(elems / vecSize, vecTy);
SmallVector<Value> vecVals;
for (unsigned i = 0; i < elems; i += vecSize) {
Value packed = rewriter.create<LLVM::UndefOp>(loc, vecTy);
for (unsigned j = 0; j < vecSize; j++)
packed = insert_element(vecTy, packed, vals[i + j], i32_val(j));
vecVals.push_back(packed);
}
// This needs to be ordered the same way that
// ldmatrix.x4 would order it
// TODO: this needs to be refactor so we don't
// implicitly depends on how emitOffsetsForMMAV2
// is implemented
SmallVector<Value> reorderedVals;
for (unsigned i = 0; i < vecVals.size(); i += 4) {
reorderedVals.push_back(vecVals[i]);
reorderedVals.push_back(vecVals[i + 2]);
reorderedVals.push_back(vecVals[i + 1]);
reorderedVals.push_back(vecVals[i + 3]);
}
// return composeValuesToDotOperandLayoutStruct(ha, numRepM, numRepK);
Type structTy =
LLVM::LLVMStructType::getLiteral(this->getContext(), types);
Value view =
getStructFromElements(loc, reorderedVals, rewriter, structTy);
rewriter.replaceOp(op, view);
return success();
}
}
// TODO: to be implemented
llvm_unreachable("unsupported layout conversion");
return failure();
}
static void storeBlockedToShared(Value src, Value llSrc,
ArrayRef<Value> srcStrides,
ArrayRef<Value> srcIndices, Value dst,
Value smemBase, Type elemPtrTy, Location loc,
ConversionPatternRewriter &rewriter) {
auto srcTy = src.getType().cast<RankedTensorType>();
auto srcShape = srcTy.getShape();
assert(srcShape.size() == 2 && "Unexpected rank of insertSlice");
auto elemTy = srcTy.getElementType();
auto dstTy = dst.getType().cast<RankedTensorType>();
auto srcBlockedLayout = srcTy.getEncoding().cast<BlockedEncodingAttr>();
auto dstSharedLayout = dstTy.getEncoding().cast<SharedEncodingAttr>();
auto inOrd = srcBlockedLayout.getOrder();
auto outOrd = dstSharedLayout.getOrder();
if (inOrd != outOrd)
llvm_unreachable(
"blocked -> shared with different order not yet implemented");
unsigned inVec =
inOrd == outOrd ? srcBlockedLayout.getSizePerThread()[inOrd[0]] : 1;
unsigned outVec = dstSharedLayout.getVec();
unsigned minVec = std::min(outVec, inVec);
unsigned perPhase = dstSharedLayout.getPerPhase();
unsigned maxPhase = dstSharedLayout.getMaxPhase();
unsigned numElems = getElemsPerThread(srcTy);
auto inVals = getElementsFromStruct(loc, llSrc, rewriter);
auto srcAccumSizeInThreads =
product<unsigned>(srcBlockedLayout.getSizePerThread());
auto wordTy = vec_ty(elemTy, minVec);
// TODO: [goostavz] We should make a cache for the calculation of
// emitBaseIndexForBlockedLayout in case backend compiler not being able to
// optimize that
SmallVector<unsigned> srcShapePerCTA = getShapePerCTA(srcBlockedLayout);
SmallVector<unsigned> reps{ceil<unsigned>(srcShape[0], srcShapePerCTA[0]),
ceil<unsigned>(srcShape[1], srcShapePerCTA[1])};
// Visit each input value in the order they are placed in inVals
//
// Please note that the order was not awaring of blockLayout.getOrder(),
// thus the adjacent elems may not belong to a same word. This could be
// improved if we update the elements order by emitIndicesForBlockedLayout()
SmallVector<unsigned> wordsInEachRep(2);
wordsInEachRep[0] = inOrd[0] == 0
? srcBlockedLayout.getSizePerThread()[0] / minVec
: srcBlockedLayout.getSizePerThread()[0];
wordsInEachRep[1] = inOrd[0] == 0
? srcBlockedLayout.getSizePerThread()[1]
: srcBlockedLayout.getSizePerThread()[1] / minVec;
Value outVecVal = i32_val(outVec);
Value minVecVal = i32_val(minVec);
auto numWordsEachRep = product<unsigned>(wordsInEachRep);
SmallVector<Value> wordVecs(numWordsEachRep);
for (unsigned i = 0; i < numElems; ++i) {
if (i % srcAccumSizeInThreads == 0) {
// start of a replication
for (unsigned w = 0; w < numWordsEachRep; ++w) {
wordVecs[w] = undef(wordTy);
}
}
unsigned linearIdxInNanoTile = i % srcAccumSizeInThreads;
auto multiDimIdxInNanoTile = getMultiDimIndex<unsigned>(
linearIdxInNanoTile, srcBlockedLayout.getSizePerThread(), inOrd);
unsigned pos = multiDimIdxInNanoTile[inOrd[0]] % minVec;
multiDimIdxInNanoTile[inOrd[0]] /= minVec;
auto wordVecIdx = getLinearIndex<unsigned>(multiDimIdxInNanoTile,
wordsInEachRep, inOrd);
wordVecs[wordVecIdx] =
insert_element(wordTy, wordVecs[wordVecIdx], inVals[i], i32_val(pos));
if (i % srcAccumSizeInThreads == srcAccumSizeInThreads - 1) {
// end of replication, store the vectors into shared memory
unsigned linearRepIdx = i / srcAccumSizeInThreads;
auto multiDimRepIdx =
getMultiDimIndex<unsigned>(linearRepIdx, reps, inOrd);
for (unsigned linearWordIdx = 0; linearWordIdx < numWordsEachRep;
++linearWordIdx) {
// step 1: recover the multidim_index from the index of
// input_elements
auto multiDimWordIdx =
getMultiDimIndex<unsigned>(linearWordIdx, wordsInEachRep, inOrd);
SmallVector<Value> multiDimIdx(2);
auto wordOffset0 = multiDimRepIdx[0] * srcShapePerCTA[0] +
multiDimWordIdx[0] * (inOrd[0] == 0 ? minVec : 1);
auto wordOffset1 = multiDimRepIdx[1] * srcShapePerCTA[1] +
multiDimWordIdx[1] * (inOrd[0] == 1 ? minVec : 1);
multiDimIdx[0] = add(srcIndices[0], i32_val(wordOffset0));
multiDimIdx[1] = add(srcIndices[1], i32_val(wordOffset1));
// step 2: do swizzling
Value remained = urem(multiDimIdx[outOrd[0]], outVecVal);
multiDimIdx[outOrd[0]] = udiv(multiDimIdx[outOrd[0]], outVecVal);
Value off_1 = mul(multiDimIdx[outOrd[1]], srcStrides[outOrd[1]]);
Value phaseId = udiv(multiDimIdx[outOrd[1]], i32_val(perPhase));
phaseId = urem(phaseId, i32_val(maxPhase));
Value off_0 = xor_(multiDimIdx[outOrd[0]], phaseId);
off_0 = mul(off_0, outVecVal);
remained = udiv(remained, minVecVal);
off_0 = add(off_0, mul(remained, minVecVal));
Value offset = add(off_1, off_0);
// step 3: store
Value smemAddr = gep(elemPtrTy, smemBase, offset);
smemAddr = bitcast(smemAddr, ptr_ty(wordTy, 3));
store(wordVecs[linearWordIdx], smemAddr);
}
}
}
}
private:
SmallVector<Value> getMultiDimOffset(Attribute layout, Location loc,
ConversionPatternRewriter &rewriter,
unsigned elemId, ArrayRef<int64_t> shape,
ArrayRef<unsigned> multiDimCTAInRepId,
ArrayRef<unsigned> shapePerCTA) const {
unsigned rank = shape.size();
if (auto blockedLayout = layout.dyn_cast<BlockedEncodingAttr>()) {
auto multiDimOffsetFirstElem =
emitBaseIndexForBlockedLayout(loc, rewriter, blockedLayout, shape);
SmallVector<Value> multiDimOffset(rank);
SmallVector<unsigned> multiDimElemId = getMultiDimIndex<unsigned>(
elemId, getSizePerThread(layout), getOrder(layout));
for (unsigned d = 0; d < rank; ++d) {
multiDimOffset[d] = add(multiDimOffsetFirstElem[d],
idx_val(multiDimCTAInRepId[d] * shapePerCTA[d] +
multiDimElemId[d]));
}
return multiDimOffset;
}
if (auto sliceLayout = layout.dyn_cast<SliceEncodingAttr>()) {
unsigned dim = sliceLayout.getDim();
auto multiDimOffsetParent =
getMultiDimOffset(sliceLayout.getParent(), loc, rewriter, elemId,
sliceLayout.paddedShape(shape),
sliceLayout.paddedShape(multiDimCTAInRepId),
sliceLayout.paddedShape(shapePerCTA));
SmallVector<Value> multiDimOffset(rank);
for (unsigned d = 0; d < rank + 1; ++d) {
if (d == dim)
continue;
unsigned slicedD = d < dim ? d : (d - 1);
multiDimOffset[slicedD] = multiDimOffsetParent[d];
}
return multiDimOffset;
}
if (auto mmaLayout = layout.dyn_cast<MmaEncodingAttr>()) {
SmallVector<Value> mmaColIdx(4);
SmallVector<Value> mmaRowIdx(2);
Value threadId = getThreadId(rewriter, loc);
Value warpSize = idx_val(32);
Value laneId = urem(threadId, warpSize);
Value warpId = udiv(threadId, warpSize);
// TODO: fix the bug in MMAEncodingAttr document
SmallVector<Value> multiDimWarpId(2);
multiDimWarpId[0] = urem(warpId, idx_val(mmaLayout.getWarpsPerCTA()[0]));
multiDimWarpId[1] = udiv(warpId, idx_val(mmaLayout.getWarpsPerCTA()[0]));
Value _1 = idx_val(1);
Value _2 = idx_val(2);
Value _4 = idx_val(4);
Value _8 = idx_val(8);
Value _16 = idx_val(16);
if (mmaLayout.getVersion() == 2) {
multiDimWarpId[0] = urem(multiDimWarpId[0], idx_val(shape[0] / 16));
multiDimWarpId[1] = urem(multiDimWarpId[1], idx_val(shape[1] / 8));
Value mmaGrpId = udiv(laneId, _4);
Value mmaGrpIdP8 = add(mmaGrpId, _8);
Value mmaThreadIdInGrp = urem(laneId, _4);
Value mmaThreadIdInGrpM2 = mul(mmaThreadIdInGrp, _2);
Value mmaThreadIdInGrpM2P1 = add(mmaThreadIdInGrpM2, _1);
Value rowWarpOffset = mul(multiDimWarpId[0], _16);
mmaRowIdx[0] = add(mmaGrpId, rowWarpOffset);
mmaRowIdx[1] = add(mmaGrpIdP8, rowWarpOffset);
Value colWarpOffset = mul(multiDimWarpId[1], _8);
mmaColIdx[0] = add(mmaThreadIdInGrpM2, colWarpOffset);
mmaColIdx[1] = add(mmaThreadIdInGrpM2P1, colWarpOffset);
} else if (mmaLayout.getVersion() == 1) {
multiDimWarpId[0] = urem(multiDimWarpId[0], idx_val(shape[0] / 16));
multiDimWarpId[1] = urem(multiDimWarpId[1], idx_val(shape[1] / 16));
Value laneIdDiv16 = udiv(laneId, _16);
Value laneIdRem16 = urem(laneId, _16);
Value laneIdRem2 = urem(laneId, _2);
Value laneIdRem16Div8 = udiv(laneIdRem16, _8);
Value laneIdRem16Div4 = udiv(laneIdRem16, _4);
Value laneIdRem16Div4Rem2 = urem(laneIdRem16Div4, _2);
Value laneIdRem4Div2 = udiv(urem(laneId, _4), _2);
mmaRowIdx[0] =
add(add(mul(laneIdDiv16, _8), mul(laneIdRem16Div4Rem2, _4)),
laneIdRem2);
mmaRowIdx[1] = add(mmaRowIdx[0], _2);
mmaColIdx[0] = add(mul(laneIdRem16Div8, _4), mul(laneIdRem4Div2, _2));
mmaColIdx[1] = add(mmaColIdx[0], _1);
mmaColIdx[2] = add(mmaColIdx[0], _8);
mmaColIdx[3] = add(mmaColIdx[0], idx_val(9));
} else {
llvm_unreachable("Unexpected MMALayout version");
}
assert(rank == 2);
SmallVector<Value> multiDimOffset(rank);
if (mmaLayout.getVersion() == 2) {
multiDimOffset[0] = elemId < 2 ? mmaRowIdx[0] : mmaRowIdx[1];
multiDimOffset[1] = elemId % 2 == 0 ? mmaColIdx[0] : mmaColIdx[1];
multiDimOffset[0] = add(
multiDimOffset[0], idx_val(multiDimCTAInRepId[0] * shapePerCTA[0]));
multiDimOffset[1] = add(
multiDimOffset[1], idx_val(multiDimCTAInRepId[1] * shapePerCTA[1]));
} else if (mmaLayout.getVersion() == 1) {
// the order of elements in a thread:
// c0, c1, ... c4, c5
// c2, c3, ... c6, c7
if (elemId < 2) {
multiDimOffset[0] = mmaRowIdx[0];
multiDimOffset[1] = mmaColIdx[elemId % 2];
} else if (elemId >= 2 && elemId < 4) {
multiDimOffset[0] = mmaRowIdx[1];
multiDimOffset[1] = mmaColIdx[elemId % 2];
} else if (elemId >= 4 && elemId < 6) {
multiDimOffset[0] = mmaRowIdx[0];
multiDimOffset[1] = mmaColIdx[elemId % 2 + 2];
} else if (elemId >= 6) {
multiDimOffset[0] = mmaRowIdx[1];
multiDimOffset[1] = mmaColIdx[elemId % 2 + 2];
}
multiDimOffset[0] = add(
multiDimOffset[0], idx_val(multiDimCTAInRepId[0] * shapePerCTA[0]));
multiDimOffset[1] = add(
multiDimOffset[1], idx_val(multiDimCTAInRepId[1] * shapePerCTA[1]));
} else {
llvm_unreachable("Unexpected MMALayout version");
}
return multiDimOffset;
}
llvm_unreachable("unexpected layout in getMultiDimOffset");
}
// shared memory rd/st for blocked or mma layout with data padding
void processReplica(Location loc, ConversionPatternRewriter &rewriter,
bool stNotRd, RankedTensorType type,
ArrayRef<unsigned> numCTAsEachRep,
ArrayRef<unsigned> multiDimRepId, unsigned vec,
ArrayRef<unsigned> paddedRepShape,
ArrayRef<unsigned> outOrd, SmallVector<Value> &vals,
Value smemBase) const;
// blocked/mma -> blocked/mma.
// Data padding in shared memory to avoid bank conflict.
LogicalResult
lowerDistributedToDistributed(triton::gpu::ConvertLayoutOp op,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const;
// blocked -> shared.
// Swizzling in shared memory to avoid bank conflict. Normally used for
// A/B operands of dots.
LogicalResult lowerBlockedToShared(triton::gpu::ConvertLayoutOp op,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const;
// shared -> mma_operand
LogicalResult
lowerSharedToDotOperand(triton::gpu::ConvertLayoutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const;
// shared -> dot_operand if the result layout is mma
Value lowerSharedToDotOperandMMA(
triton::gpu::ConvertLayoutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, const MmaEncodingAttr &mmaLayout,
const DotOperandEncodingAttr &dotOperandLayout, bool isOuter) const;
};
void ConvertLayoutOpConversion::processReplica(
Location loc, ConversionPatternRewriter &rewriter, bool stNotRd,
RankedTensorType type, ArrayRef<unsigned> numCTAsEachRep,
ArrayRef<unsigned> multiDimRepId, unsigned vec,
ArrayRef<unsigned> paddedRepShape, ArrayRef<unsigned> outOrd,
SmallVector<Value> &vals, Value smemBase) const {
auto accumNumCTAsEachRep = product<unsigned>(numCTAsEachRep);
auto layout = type.getEncoding();
auto blockedLayout = layout.dyn_cast<BlockedEncodingAttr>();
auto sliceLayout = layout.dyn_cast<SliceEncodingAttr>();
auto mmaLayout = layout.dyn_cast<MmaEncodingAttr>();
auto rank = type.getRank();
auto sizePerThread = getSizePerThread(layout);
auto accumSizePerThread = product<unsigned>(sizePerThread);
SmallVector<unsigned> numCTAs(rank);
auto shapePerCTA = getShapePerCTA(layout);
auto order = getOrder(layout);
for (unsigned d = 0; d < rank; ++d) {
numCTAs[d] = ceil<unsigned>(type.getShape()[d], shapePerCTA[d]);
}
auto elemTy = type.getElementType();
bool isInt1 = elemTy.isInteger(1);
bool isPtr = elemTy.isa<triton::PointerType>();
auto llvmElemTyOrig = getTypeConverter()->convertType(elemTy);
if (isInt1)
elemTy = IntegerType::get(elemTy.getContext(), 8);
else if (isPtr)
elemTy = IntegerType::get(elemTy.getContext(), 64);
auto llvmElemTy = getTypeConverter()->convertType(elemTy);
for (unsigned ctaId = 0; ctaId < accumNumCTAsEachRep; ++ctaId) {
auto multiDimCTAInRepId =
getMultiDimIndex<unsigned>(ctaId, numCTAsEachRep, order);
SmallVector<unsigned> multiDimCTAId(rank);
for (const auto &it : llvm::enumerate(multiDimCTAInRepId)) {
auto d = it.index();
multiDimCTAId[d] = multiDimRepId[d] * numCTAsEachRep[d] + it.value();
}
auto linearCTAId = getLinearIndex<unsigned>(multiDimCTAId, numCTAs, order);
// TODO: This is actually redundant index calculation, we should
// consider of caching the index calculation result in case
// of performance issue observed.
for (unsigned elemId = 0; elemId < accumSizePerThread; elemId += vec) {
SmallVector<Value> multiDimOffset =
getMultiDimOffset(layout, loc, rewriter, elemId, type.getShape(),
multiDimCTAInRepId, shapePerCTA);
Value offset =
linearize(rewriter, loc, multiDimOffset, paddedRepShape, outOrd);
auto elemPtrTy = ptr_ty(llvmElemTy, 3);
Value ptr = gep(elemPtrTy, smemBase, offset);
auto vecTy = vec_ty(llvmElemTy, vec);
ptr = bitcast(ptr, ptr_ty(vecTy, 3));
if (stNotRd) {
Value valVec = undef(vecTy);
for (unsigned v = 0; v < vec; ++v) {
auto currVal = vals[elemId + linearCTAId * accumSizePerThread + v];
if (isInt1)
currVal = zext(llvmElemTy, currVal);
else if (isPtr)
currVal = ptrtoint(llvmElemTy, currVal);
valVec = insert_element(vecTy, valVec, currVal, idx_val(v));
}
store(valVec, ptr);
} else {
Value valVec = load(ptr);
for (unsigned v = 0; v < vec; ++v) {
Value currVal = extract_element(llvmElemTy, valVec, idx_val(v));
if (isInt1)
currVal =
icmp_ne(currVal, rewriter.create<LLVM::ConstantOp>(
loc, i8_ty, rewriter.getI8IntegerAttr(0)));
else if (isPtr)
currVal = inttoptr(llvmElemTyOrig, currVal);
vals[elemId + linearCTAId * accumSizePerThread + v] = currVal;
}
}
}
}
}
LogicalResult ConvertLayoutOpConversion::lowerDistributedToDistributed(
triton::gpu::ConvertLayoutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = op.getLoc();
Value src = op.src();
Value dst = op.result();
auto srcTy = src.getType().cast<RankedTensorType>();
auto dstTy = dst.getType().cast<RankedTensorType>();
Attribute srcLayout = srcTy.getEncoding();
Attribute dstLayout = dstTy.getEncoding();
auto llvmElemTy = getTypeConverter()->convertType(dstTy.getElementType());
Value smemBase = getSharedMemoryBase(loc, rewriter, op.getOperation());
auto elemPtrTy = ptr_ty(llvmElemTy, 3);
smemBase = bitcast(smemBase, elemPtrTy);
auto shape = dstTy.getShape();
unsigned rank = dstTy.getRank();
SmallVector<unsigned> numReplicates(rank);
SmallVector<unsigned> inNumCTAsEachRep(rank);
SmallVector<unsigned> outNumCTAsEachRep(rank);
SmallVector<unsigned> inNumCTAs(rank);
SmallVector<unsigned> outNumCTAs(rank);
auto srcShapePerCTA = getShapePerCTA(srcLayout);
auto dstShapePerCTA = getShapePerCTA(dstLayout);
for (unsigned d = 0; d < rank; ++d) {
unsigned inPerCTA = std::min<unsigned>(shape[d], srcShapePerCTA[d]);
unsigned outPerCTA = std::min<unsigned>(shape[d], dstShapePerCTA[d]);
unsigned maxPerCTA = std::max(inPerCTA, outPerCTA);
numReplicates[d] = ceil<unsigned>(shape[d], maxPerCTA);
inNumCTAsEachRep[d] = maxPerCTA / inPerCTA;
outNumCTAsEachRep[d] = maxPerCTA / outPerCTA;
assert(maxPerCTA % inPerCTA == 0 && maxPerCTA % outPerCTA == 0);
inNumCTAs[d] = ceil<unsigned>(shape[d], inPerCTA);
outNumCTAs[d] = ceil<unsigned>(shape[d], outPerCTA);
}
// Potentially we need to store for multiple CTAs in this replication
auto accumNumReplicates = product<unsigned>(numReplicates);
// unsigned elems = getElemsPerThread(srcTy);
auto vals = getElementsFromStruct(loc, adaptor.src(), rewriter);
unsigned inVec = 0;
unsigned outVec = 0;
auto paddedRepShape = getScratchConfigForCvtLayout(op, inVec, outVec);
unsigned outElems = getElemsPerThread(dstTy);
auto outOrd = getOrder(dstLayout);
SmallVector<Value> outVals(outElems);
for (unsigned repId = 0; repId < accumNumReplicates; ++repId) {
auto multiDimRepId =
getMultiDimIndex<unsigned>(repId, numReplicates, outOrd);
if (repId != 0)
barrier();
if (srcLayout.isa<BlockedEncodingAttr>() ||
srcLayout.isa<SliceEncodingAttr>() ||
srcLayout.isa<MmaEncodingAttr>()) {
processReplica(loc, rewriter, /*stNotRd*/ true, srcTy, inNumCTAsEachRep,
multiDimRepId, inVec, paddedRepShape, outOrd, vals,
smemBase);
} else {
assert(0 && "ConvertLayout with input layout not implemented");
return failure();
}
barrier();
if (dstLayout.isa<BlockedEncodingAttr>() ||
dstLayout.isa<SliceEncodingAttr>() ||
dstLayout.isa<MmaEncodingAttr>()) {
processReplica(loc, rewriter, /*stNotRd*/ false, dstTy, outNumCTAsEachRep,
multiDimRepId, outVec, paddedRepShape, outOrd, outVals,
smemBase);
} else {
assert(0 && "ConvertLayout with output layout not implemented");
return failure();
}
}
SmallVector<Type> types(outElems, llvmElemTy);
auto *ctx = llvmElemTy.getContext();
Type structTy = struct_ty(types);
Value result = getStructFromElements(loc, outVals, rewriter, structTy);
rewriter.replaceOp(op, result);
return success();
}
LogicalResult ConvertLayoutOpConversion::lowerBlockedToShared(
triton::gpu::ConvertLayoutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = op.getLoc();
Value src = op.src();
Value dst = op.result();
auto srcTy = src.getType().cast<RankedTensorType>();
auto srcShape = srcTy.getShape();
auto dstTy = dst.getType().cast<RankedTensorType>();
auto dstShape = dstTy.getShape();
assert(srcShape.size() == 2 &&
"Unexpected rank of ConvertLayout(blocked->shared)");
auto srcBlockedLayout = srcTy.getEncoding().cast<BlockedEncodingAttr>();
auto dstSharedLayout = dstTy.getEncoding().cast<SharedEncodingAttr>();
auto inOrd = srcBlockedLayout.getOrder();
auto outOrd = dstSharedLayout.getOrder();
Value smemBase = getSharedMemoryBase(loc, rewriter, dst);
auto elemTy = getTypeConverter()->convertType(srcTy.getElementType());
auto elemPtrTy = ptr_ty(getTypeConverter()->convertType(elemTy), 3);
smemBase = bitcast(smemBase, elemPtrTy);
auto srcStrides = getStridesFromShapeAndOrder(srcShape, inOrd, loc, rewriter);
auto srcIndices =
emitBaseIndexForBlockedLayout(loc, rewriter, srcBlockedLayout, srcShape);
storeBlockedToShared(src, adaptor.src(), srcStrides, srcIndices, dst,
smemBase, elemPtrTy, loc, rewriter);
auto smemObj = SharedMemoryObject(smemBase, dstShape, outOrd, loc, rewriter);
auto retVal = getStructFromSharedMemoryObject(loc, smemObj, rewriter);
rewriter.replaceOp(op, retVal);
return success();
}
struct InsertSliceOpConversion
: public ConvertTritonGPUOpToLLVMPattern<tensor::InsertSliceOp> {
using ConvertTritonGPUOpToLLVMPattern<
tensor::InsertSliceOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(tensor::InsertSliceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// %dst = insert_slice %src into %dst[%offsets]
Location loc = op->getLoc();
Value dst = op.dest();
Value src = op.source();
Value res = op.result();
assert(allocation->getBufferId(res) == Allocation::InvalidBufferId &&
"Only support in-place insert_slice for now");
auto srcTy = src.getType().dyn_cast<RankedTensorType>();
auto srcLayout = srcTy.getEncoding().dyn_cast<BlockedEncodingAttr>();
auto srcShape = srcTy.getShape();
assert(srcLayout && "Unexpected srcLayout in InsertSliceOpConversion");
auto dstTy = dst.getType().dyn_cast<RankedTensorType>();
auto dstLayout = dstTy.getEncoding().dyn_cast<SharedEncodingAttr>();
auto llDst = adaptor.dest();
assert(dstLayout && "Unexpected dstLayout in InsertSliceOpConversion");
assert(op.hasUnitStride() &&
"Only unit stride supported by InsertSliceOpConversion");
// newBase = base + offset
// Triton support either static and dynamic offsets
auto smemObj = getSharedMemoryObjectFromStruct(loc, llDst, rewriter);
SmallVector<Value, 4> offsets;
SmallVector<Value, 4> srcStrides;
auto mixedOffsets = op.getMixedOffsets();
for (auto i = 0; i < mixedOffsets.size(); ++i) {
if (op.isDynamicOffset(i)) {
offsets.emplace_back(adaptor.offsets()[i]);
} else {
offsets.emplace_back(i32_val(op.getStaticOffset(i)));
}
// Like insert_slice_async, we only support slice from one dimension,
// which has a slice size of 1
if (op.getStaticSize(i) != 1) {
srcStrides.emplace_back(smemObj.strides[i]);
}
}
// Compute the offset based on the original strides of the shared memory
// object
auto offset = dot(rewriter, loc, offsets, smemObj.strides);
auto llvmElemTy = getTypeConverter()->convertType(dstTy.getElementType());
auto elemPtrTy = ptr_ty(llvmElemTy, 3);
auto smemBase = gep(elemPtrTy, smemObj.base, offset);
auto llSrc = adaptor.source();
auto srcIndices =
emitBaseIndexForBlockedLayout(loc, rewriter, srcLayout, srcShape);
ConvertLayoutOpConversion::storeBlockedToShared(src, llSrc, srcStrides,
srcIndices, dst, smemBase,
elemPtrTy, loc, rewriter);
// Barrier is not necessary.
// The membar pass knows that it writes to shared memory and will handle it
// properly.
rewriter.replaceOp(op, llDst);
return success();
}
};
/// ====================== dot codegen begin ==========================
struct DotOpConversion : public ConvertTritonGPUOpToLLVMPattern<triton::DotOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::DotOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::DotOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// D = A * B + C
Value A = op.a();
Value D = op.getResult();
// Here we assume the DotOp's operands always comes from shared memory.
auto AShape = A.getType().cast<RankedTensorType>().getShape();
size_t reduceAxis = 1;
unsigned K = AShape[reduceAxis];
bool isOuter = K == 1;
bool isMMA = D.getType()
.cast<RankedTensorType>()
.getEncoding()
.isa<MmaEncodingAttr>();
MmaEncodingAttr mmaLayout;
if (isMMA)
mmaLayout = D.getType()
.cast<RankedTensorType>()
.getEncoding()
.cast<MmaEncodingAttr>();
bool isHMMA = isDotHMMA(op);
if (!isOuter && isMMA && isHMMA) {
if (mmaLayout.getVersion() == 1)
return convertMMA884(op, adaptor, rewriter);
if (mmaLayout.getVersion() == 2)
return convertMMA16816(op, adaptor, rewriter);
llvm::report_fatal_error(
"Unsupported MMA kind found when converting DotOp to LLVM.");
}
if (op.getType().cast<RankedTensorType>().getElementType().isF32() &&
A.getType().cast<RankedTensorType>().getElementType().isF32() &&
!op.allowTF32())
return convertFMADot(op, adaptor, rewriter);
llvm::report_fatal_error(
"Unsupported DotOp found when converting TritonGPU to LLVM.");
}
// Tell whether a DotOp support HMMA.
// This is port from the master branch, the original logic is retained.
static bool isDotHMMA(DotOp op) {
auto a = op.a();
auto b = op.b();
auto c = op.c();
auto d = op.getResult();
auto aTensorTy = a.getType().cast<RankedTensorType>();
auto bTensorTy = b.getType().cast<RankedTensorType>();
auto cTensorTy = c.getType().cast<RankedTensorType>();
auto dTensorTy = d.getType().cast<RankedTensorType>();
if (!dTensorTy.getEncoding().isa<MmaEncodingAttr>())
return false;
auto mmaLayout = dTensorTy.getEncoding().cast<MmaEncodingAttr>();
auto aElemTy = aTensorTy.getElementType();
auto bElemTy = bTensorTy.getElementType();
assert((mmaLayout.getVersion() == 1 || mmaLayout.getVersion() == 2) &&
"Unexpected MMA layout version found");
// Refer to mma section for the data type supported by Volta and Hopper
// Tensor Core in
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-fragment-mma-884-f16
return (aElemTy.isF16() && bElemTy.isF16()) ||
(aElemTy.isBF16() && bElemTy.isBF16()) ||
(aElemTy.isF32() && bElemTy.isF32() && op.allowTF32() &&
mmaLayout.getVersion() >= 2) ||
(aElemTy.isInteger(8) && bElemTy.isInteger(8) &&
mmaLayout.getVersion() >= 2);
}
// Tell whether a DotOp support HMMA by the operand type(either $a or $b).
// We cannot get both the operand types(in TypeConverter), here we assume the
// types of both the operands are identical here.
// TODO[Superjomn]: Find a better way to implement it.
static bool isDotHMMA(TensorType operand, int mmaVersion) {
auto elemTy = operand.getElementType();
return elemTy.isF16() || elemTy.isBF16() ||
(elemTy.isF32() && mmaVersion >= 2) ||
(elemTy.isInteger(8) && mmaVersion >= 2);
}
private:
// Convert to mma.m16n8k16
LogicalResult convertMMA16816(triton::DotOp a, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const;
/// Convert to mma.m8n8k4
LogicalResult convertMMA884(triton::DotOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const;
LogicalResult convertFMADot(triton::DotOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const;
};
Value ConvertLayoutOpConversion::lowerSharedToDotOperandMMA(
triton::gpu::ConvertLayoutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, const MmaEncodingAttr &mmaLayout,
const DotOperandEncodingAttr &dotOperandLayout, bool isOuter) const {
auto loc = op.getLoc();
Value src = op.src();
Value dst = op.result();
auto dstTensorTy = dst.getType().cast<RankedTensorType>();
bool isHMMA = DotOpConversion::isDotHMMA(dstTensorTy, mmaLayout.getVersion());
auto smemObj = getSharedMemoryObjectFromStruct(loc, adaptor.src(), rewriter);
Value res;
if (!isOuter && mmaLayout.getVersion() == 2 && isHMMA) { // tensor core v2
MMA16816ConversionHelper mmaHelper(src.getType(), mmaLayout,
getThreadId(rewriter, loc), rewriter,
getTypeConverter(), op.getLoc());
if (dotOperandLayout.getOpIdx() == 0) {
// operand $a
res = mmaHelper.loadA(src, smemObj);
} else if (dotOperandLayout.getOpIdx() == 1) {
// operand $b
res = mmaHelper.loadB(src, smemObj);
}
} else if (!isOuter && mmaLayout.getVersion() == 1 &&
isHMMA) { // tensor core v1
DotOpMmaV1ConversionHelper helper(mmaLayout);
if (dotOperandLayout.getOpIdx() == 0) {
// operand $a
res =
helper.loadA(src, smemObj, getThreadId(rewriter, loc), loc, rewriter);
} else if (dotOperandLayout.getOpIdx() == 1) {
// operand $b
res =
helper.loadB(src, smemObj, getThreadId(rewriter, loc), loc, rewriter);
}
} else {
assert(false && "Unsupported mma layout found");
}
return res;
}
LogicalResult ConvertLayoutOpConversion::lowerSharedToDotOperand(
triton::gpu::ConvertLayoutOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = op.getLoc();
Value src = op.src();
Value dst = op.result();
auto dstTensorTy = dst.getType().cast<RankedTensorType>();
auto srcTensorTy = src.getType().cast<RankedTensorType>();
auto dotOperandLayout =
dstTensorTy.getEncoding().cast<DotOperandEncodingAttr>();
auto sharedLayout = srcTensorTy.getEncoding().cast<SharedEncodingAttr>();
bool isOuter{};
int K{};
if (dotOperandLayout.getOpIdx() == 0) // $a
K = dstTensorTy.getShape()[sharedLayout.getOrder()[0]];
else // $b
K = dstTensorTy.getShape()[sharedLayout.getOrder()[1]];
isOuter = K == 1;
Value res;
if (auto mmaLayout =
dotOperandLayout.getParent().dyn_cast_or_null<MmaEncodingAttr>()) {
res = lowerSharedToDotOperandMMA(op, adaptor, rewriter, mmaLayout,
dotOperandLayout, isOuter);
} else if (auto blockedLayout =
dotOperandLayout.getParent()
.dyn_cast_or_null<BlockedEncodingAttr>()) {
auto dotOpLayout = dstTensorTy.getEncoding().cast<DotOperandEncodingAttr>();
DotOpFMAConversionHelper helper(blockedLayout);
auto thread = getThreadId(rewriter, loc);
if (dotOpLayout.getOpIdx() == 0) { // $a
res = helper.loadA(src, adaptor.src(), blockedLayout, thread, loc,
rewriter);
} else { // $b
res = helper.loadB(src, adaptor.src(), blockedLayout, thread, loc,
rewriter);
}
} else {
assert(false && "Unsupported dot operand layout found");
}
rewriter.replaceOp(op, res);
return success();
}
LogicalResult
DotOpConversion::convertMMA16816(triton::DotOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto loc = op.getLoc();
auto mmaLayout = op.getResult()
.getType()
.cast<RankedTensorType>()
.getEncoding()
.cast<MmaEncodingAttr>();
Value A = op.a();
Value B = op.b();
Value C = op.c();
MMA16816ConversionHelper mmaHelper(A.getType(), mmaLayout,
getThreadId(rewriter, loc), rewriter,
getTypeConverter(), loc);
auto ATensorTy = A.getType().cast<RankedTensorType>();
auto BTensorTy = B.getType().cast<RankedTensorType>();
assert(ATensorTy.getEncoding().isa<DotOperandEncodingAttr>() &&
BTensorTy.getEncoding().isa<DotOperandEncodingAttr>() &&
"Both $a and %b should be DotOperand layout.");
Value loadedA, loadedB, loadedC;
loadedA = adaptor.a();
loadedB = adaptor.b();
loadedC = mmaHelper.loadC(op.c(), adaptor.c());
return mmaHelper.convertDot(A, B, C, op.d(), loadedA, loadedB, loadedC, op,
adaptor);
}
// Simply port the old code here to avoid large difference and make debugging
// and profiling easier.
LogicalResult
DotOpConversion::convertMMA884(triton::DotOp op, DotOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto *ctx = op.getContext();
auto loc = op.getLoc();
Value A = op.a();
Value B = op.b();
Value D = op.getResult();
auto mmaLayout = D.getType()
.cast<RankedTensorType>()
.getEncoding()
.cast<MmaEncodingAttr>();
auto ATensorTy = A.getType().cast<RankedTensorType>();
auto BTensorTy = B.getType().cast<RankedTensorType>();
auto DTensorTy = D.getType().cast<RankedTensorType>();
SmallVector<int> AShape(ATensorTy.getShape().begin(),
ATensorTy.getShape().end());
SmallVector<int> BShape(BTensorTy.getShape().begin(),
BTensorTy.getShape().end());
auto DShape = DTensorTy.getShape();
auto wpt = mmaLayout.getWarpsPerCTA();
// TODO[Superjomn]: order cannot accessed in DotOp.
SmallVector<unsigned> AOrder({1, 0});
SmallVector<unsigned> BOrder({1, 0});
bool isARow = AOrder[0] != 0;
bool isBRow = BOrder[0] != 0;
bool isAVec4 = !isARow && AShape[isARow] <= 16; // fp16*4 = 16bytes
bool isBVec4 = isBRow && BShape[isBRow] <= 16;
int packSize0 = (isARow || isAVec4) ? 1 : 2;
int packSize1 = (isBRow && !isBVec4) ? 2 : 1;
SmallVector<int> fpw({2, 2, 1});
SmallVector<int> rep({2 * packSize0, 2 * packSize1, 1});
SmallVector<int> spw({fpw[0] * 4 * rep[0], fpw[1] * 4 * rep[1], 1});
Value loadedA = adaptor.a();
Value loadedB = adaptor.b();
Value loadedC = adaptor.c();
DotOpMmaV1ConversionHelper helper(mmaLayout);
unsigned numM = rep[0] * DShape[0] / (spw[0] * wpt[0]);
unsigned numN = rep[1] * DShape[1] / (spw[1] * wpt[0]);
unsigned NK = AShape[1];
auto has = helper.extractLoadedOperand(loadedA, NK, rewriter);
auto hbs = helper.extractLoadedOperand(loadedB, NK, rewriter);
// initialize accumulators
SmallVector<Value> acc = getElementsFromStruct(loc, loadedC, rewriter);
size_t resSize = acc.size();
SmallVector<Value> resVals(resSize);
auto callMMA = [&](unsigned m, unsigned n, unsigned k) {
auto ha = has.at({m, k});
auto hb = hbs.at({n, k});
std::vector<size_t> idx{{
(m * 2 + 0) + (n * 4 + 0) * numM, // row0
(m * 2 + 0) + (n * 4 + 1) * numM,
(m * 2 + 1) + (n * 4 + 0) * numM, // row1
(m * 2 + 1) + (n * 4 + 1) * numM,
(m * 2 + 0) + (n * 4 + 2) * numM, // row2
(m * 2 + 0) + (n * 4 + 3) * numM,
(m * 2 + 1) + (n * 4 + 2) * numM, // row3
(m * 2 + 1) + (n * 4 + 3) * numM,
}};
PTXBuilder builder;
auto *resOprs = builder.newListOperand(8, "=f");
auto *AOprs = builder.newListOperand({
{ha.first, "r"},
{ha.second, "r"},
});
auto *BOprs = builder.newListOperand({
{hb.first, "r"},
{hb.second, "r"},
});
auto *COprs = builder.newListOperand();
for (int i = 0; i < 8; ++i)
COprs->listAppend(builder.newOperand(acc[idx[i]], std::to_string(i)));
auto mma = builder.create("mma.sync.aligned.m8n8k4")
->o(isARow ? "row" : "col")
.o(isBRow ? "row" : "col")
.o("f32.f16.f16.f32");
mma(resOprs, AOprs, BOprs, COprs);
Value res = builder.launch(rewriter, loc, helper.getMmaRetType(ATensorTy));
auto getIntAttr = [&](int v) {
return ArrayAttr::get(ctx, {IntegerAttr::get(i32_ty, v)});
};
for (unsigned i = 0; i < 8; i++) {
Value elem = extract_val(f32_ty, res, getIntAttr(i));
acc[idx[i]] = elem;
// TODO[goostavz]: double confirm this when m/n/k = [32, 32, x] has been
// verified before MMA
resVals[(m * numN / 2 + n) * 8 + i] = elem;
}
};
for (unsigned k = 0; k < NK; k += 4)
for (unsigned m = 0; m < numM / 2; ++m)
for (unsigned n = 0; n < numN / 2; ++n) {
callMMA(m, n, k);
}
Type structTy = LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(resSize, type::f32Ty(ctx)));
Value res = getStructFromElements(loc, resVals, rewriter, structTy);
rewriter.replaceOp(op, res);
return success();
}
LogicalResult
DotOpConversion::convertFMADot(triton::DotOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto *ctx = rewriter.getContext();
auto loc = op.getLoc();
auto threadId = getThreadId(rewriter, loc);
using ValueTable = std::map<std::pair<int, int>, Value>;
auto A = op.a();
auto B = op.b();
auto C = op.c();
auto D = op.getResult();
auto aTensorTy = A.getType().cast<RankedTensorType>();
auto bTensorTy = B.getType().cast<RankedTensorType>();
auto cTensorTy = C.getType().cast<RankedTensorType>();
auto dTensorTy = D.getType().cast<RankedTensorType>();
auto aShape = aTensorTy.getShape();
auto bShape = bTensorTy.getShape();
auto cShape = cTensorTy.getShape();
ValueTable has, hbs;
int mShapePerCTA{-1}, nShapePerCTA{-1};
int mSizePerThread{-1}, nSizePerThread{-1};
ArrayRef<unsigned> aOrder, bOrder;
Value llA, llB;
BlockedEncodingAttr dLayout =
dTensorTy.getEncoding().cast<BlockedEncodingAttr>();
auto order = dLayout.getOrder();
auto cc = getElementsFromStruct(loc, adaptor.c(), rewriter);
DotOpFMAConversionHelper helper(dLayout);
if (auto aDotOpLayout =
aTensorTy.getEncoding()
.dyn_cast<DotOperandEncodingAttr>()) { // get input from
// convert_layout
auto bDotOpLayout =
bTensorTy.getEncoding().dyn_cast<DotOperandEncodingAttr>();
auto aLayout = aDotOpLayout.getParent().cast<BlockedEncodingAttr>();
auto bLayout = bDotOpLayout.getParent().cast<BlockedEncodingAttr>();
assert(bLayout);
llA = adaptor.a();
llB = adaptor.b();
} else if (auto aLayout =
aTensorTy.getEncoding()
.dyn_cast<SharedEncodingAttr>()) { // load input from smem
auto bLayout = bTensorTy.getEncoding().dyn_cast<SharedEncodingAttr>();
assert(bLayout);
Value thread = getThreadId(rewriter, loc);
llA = helper.loadA(A, adaptor.a(), dLayout, thread, loc, rewriter);
llB = helper.loadB(B, adaptor.b(), dLayout, thread, loc, rewriter);
}
auto sizePerThread = getSizePerThread(dLayout);
auto shapePerCTA = getShapePerCTA(dLayout);
int K = aShape[1];
int M = aShape[0];
int N = bShape[1];
mShapePerCTA = order[0] == 1 ? shapePerCTA[order[1]] : shapePerCTA[order[0]];
mSizePerThread =
order[0] == 1 ? sizePerThread[order[1]] : sizePerThread[order[0]];
nShapePerCTA = order[0] == 0 ? shapePerCTA[order[1]] : shapePerCTA[order[0]];
nSizePerThread =
order[0] == 0 ? sizePerThread[order[1]] : sizePerThread[order[0]];
has = helper.getValueTableFromStruct(llA, K, M, mShapePerCTA, mSizePerThread,
rewriter, loc);
hbs = helper.getValueTableFromStruct(llB, K, N, nShapePerCTA, nSizePerThread,
rewriter, loc);
SmallVector<Value> ret = cc;
for (unsigned k = 0; k < K; k++) {
int z = 0;
for (unsigned m = 0; m < M; m += mShapePerCTA)
for (unsigned n = 0; n < N; n += nShapePerCTA)
for (unsigned mm = 0; mm < mSizePerThread; ++mm)
for (unsigned nn = 0; nn < nSizePerThread; ++nn) {
ret[z] = rewriter.create<LLVM::FMulAddOp>(loc, has[{m + mm, k}],
hbs[{n + nn, k}], ret[z]);
++z;
}
}
auto res = getStructFromElements(
loc, ret, rewriter,
struct_ty(SmallVector<Type>(ret.size(), ret[0].getType())));
rewriter.replaceOp(op, res);
return success();
}
/// ====================== mma codegen end ============================
/// ====================== trans codegen begin ============================
struct TransOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::TransOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::TransOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::TransOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto srcSmemObj =
getSharedMemoryObjectFromStruct(loc, adaptor.src(), rewriter);
SmallVector<Value> dstStrides = {srcSmemObj.strides[1],
srcSmemObj.strides[0]};
SmallVector<Value> dstOffsets = {srcSmemObj.offsets[1],
srcSmemObj.offsets[0]};
auto dstSmemObj =
SharedMemoryObject(srcSmemObj.base, dstStrides, dstOffsets);
auto retVal = getStructFromSharedMemoryObject(loc, dstSmemObj, rewriter);
rewriter.replaceOp(op, retVal);
return success();
}
};
/// ====================== trans codegen end ============================
Value convertSplatLikeOpWithMmaLayout(const MmaEncodingAttr &layout,
Type resType, Type elemType,
Value constVal,
TypeConverter *typeConverter,
ConversionPatternRewriter &rewriter,
Location loc) {
auto tensorTy = resType.cast<RankedTensorType>();
auto shape = tensorTy.getShape();
if (layout.getVersion() == 2) {
auto [repM, repN] = DotOpMmaV2ConversionHelper::getRepMN(tensorTy);
size_t fcSize = 4 * repM * repN;
auto structTy = LLVM::LLVMStructType::getLiteral(
rewriter.getContext(), SmallVector<Type>(fcSize, elemType));
return getStructFromElements(loc, SmallVector<Value>(fcSize, constVal),
rewriter, structTy);
}
if (layout.getVersion() == 1) {
DotOpMmaV1ConversionHelper helper(layout);
int repM = helper.getRepM(shape[0]);
int repN = helper.getRepN(shape[1]);
// According to mma layout of v1, each thread process 8 elements.
int elems = 8 * repM * repN;
auto structTy = LLVM::LLVMStructType::getLiteral(
rewriter.getContext(), SmallVector<Type>(elems, elemType));
return getStructFromElements(loc, SmallVector<Value>(elems, constVal),
rewriter, structTy);
}
assert(false && "Unsupported mma layout found");
return {};
}
class TritonGPUToLLVMTypeConverter : public LLVMTypeConverter {
public:
using TypeConverter::convertType;
TritonGPUToLLVMTypeConverter(MLIRContext *ctx, LowerToLLVMOptions &option,
const DataLayoutAnalysis *analysis = nullptr)
: LLVMTypeConverter(ctx, option, analysis) {
addConversion([&](triton::PointerType type) -> llvm::Optional<Type> {
return convertTritonPointerType(type);
});
addConversion([&](RankedTensorType type) -> llvm::Optional<Type> {
return convertTritonTensorType(type);
});
// Internally store float8 as int8
addConversion([&](triton::Float8Type type) -> llvm::Optional<Type> {
return IntegerType::get(type.getContext(), 8);
});
}
Type convertTritonPointerType(triton::PointerType type) {
// Recursively translate pointee type
return LLVM::LLVMPointerType::get(convertType(type.getPointeeType()),
type.getAddressSpace());
}
llvm::Optional<Type> convertTritonTensorType(RankedTensorType type) {
auto ctx = type.getContext();
Attribute layout = type.getEncoding();
auto shape = type.getShape();
if (layout &&
(layout.isa<BlockedEncodingAttr>() || layout.isa<SliceEncodingAttr>() ||
layout.isa<MmaEncodingAttr>())) {
unsigned numElementsPerThread = getElemsPerThread(type);
SmallVector<Type, 4> types(numElementsPerThread,
convertType(type.getElementType()));
return LLVM::LLVMStructType::getLiteral(ctx, types);
} else if (auto shared_layout =
layout.dyn_cast_or_null<SharedEncodingAttr>()) {
SmallVector<Type, 4> types;
// base ptr
auto ptrType =
LLVM::LLVMPointerType::get(convertType(type.getElementType()), 3);
types.push_back(ptrType);
// shape dims
auto rank = type.getRank();
// offsets + strides
for (auto i = 0; i < rank * 2; i++) {
types.push_back(IntegerType::get(ctx, 32));
}
return LLVM::LLVMStructType::getLiteral(ctx, types);
} else if (auto dotOpLayout =
layout.dyn_cast_or_null<DotOperandEncodingAttr>()) {
if (dotOpLayout.getParent()
.isa<BlockedEncodingAttr>()) { // for parent is blocked layout
int numElemsPerThread =
DotOpFMAConversionHelper::getNumElemsPerThread(shape, dotOpLayout);
return LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(numElemsPerThread, type::f32Ty(ctx)));
} else { // for parent is MMA layout
auto mmaLayout = dotOpLayout.getParent().cast<MmaEncodingAttr>();
auto wpt = mmaLayout.getWarpsPerCTA();
Type elemTy = convertType(type.getElementType());
if (mmaLayout.getVersion() == 2) {
const llvm::DenseMap<int, Type> targetTyMap = {
{32, elemTy},
{16, vec_ty(elemTy, 2)},
{8, vec_ty(elemTy, 4)},
};
Type targetTy;
if (targetTyMap.count(elemTy.getIntOrFloatBitWidth())) {
targetTy = targetTyMap.lookup(elemTy.getIntOrFloatBitWidth());
} else {
assert(false && "Unsupported element type");
}
if (dotOpLayout.getOpIdx() == 0) { // $a
int elems =
MMA16816ConversionHelper::getANumElemsPerThread(type, wpt[0]);
return LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(elems, targetTy));
}
if (dotOpLayout.getOpIdx() == 1) { // $b
int elems =
MMA16816ConversionHelper::getBNumElemsPerThread(type, wpt[1]);
return struct_ty(SmallVector<Type>(elems, targetTy));
}
}
if (mmaLayout.getVersion() == 1) {
DotOpMmaV1ConversionHelper helper(mmaLayout);
if (dotOpLayout.getOpIdx() == 0) { // $a
int elems = helper.numElemsPerThreadA(type);
Type x2Ty = vec_ty(elemTy, 2);
return struct_ty(SmallVector<Type>(elems, x2Ty));
}
if (dotOpLayout.getOpIdx() == 1) { // $b
int elems = helper.numElemsPerThreadB(type);
Type x2Ty = vec_ty(elemTy, 2);
return struct_ty(SmallVector<Type>(elems, x2Ty));
}
}
}
llvm::errs() << "Unexpected dot operand layout detected in "
"TritonToLLVMTypeConverter";
return llvm::None;
}
return llvm::None;
}
};
struct AsyncWaitOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::gpu::AsyncWaitOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::gpu::AsyncWaitOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::gpu::AsyncWaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
PTXBuilder ptxBuilder;
auto &asyncWaitOp = *ptxBuilder.create<>("cp.async.wait_group");
auto num = op->getAttrOfType<IntegerAttr>("num").getInt();
asyncWaitOp(ptxBuilder.newConstantOperand(num));
auto ctx = op.getContext();
auto loc = op.getLoc();
auto voidTy = void_ty(ctx);
ptxBuilder.launch(rewriter, loc, voidTy);
// Safe to remove the op since it doesn't have any return value.
rewriter.eraseOp(op);
return success();
}
};
struct InsertSliceAsyncOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::gpu::InsertSliceAsyncOp>,
public LoadStoreConversionBase {
using ConvertTritonGPUOpToLLVMPattern<
triton::gpu::InsertSliceAsyncOp>::ConvertTritonGPUOpToLLVMPattern;
InsertSliceAsyncOpConversion(LLVMTypeConverter &converter,
const Allocation *allocation, Value smem,
AxisInfoAnalysis &axisAnalysisPass,
PatternBenefit benefit)
: ConvertTritonGPUOpToLLVMPattern<triton::gpu::InsertSliceAsyncOp>(
converter, allocation, smem, benefit),
LoadStoreConversionBase(axisAnalysisPass) {}
LogicalResult
matchAndRewrite(triton::gpu::InsertSliceAsyncOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// insert_slice_async %src, %dst, %index, %mask, %other
auto loc = op.getLoc();
Value src = op.src();
Value dst = op.dst();
Value res = op.result();
Value mask = op.mask();
Value other = op.other();
assert(allocation->getBufferId(res) == Allocation::InvalidBufferId &&
"Only support in-place insert_slice_async for now");
auto srcTy = src.getType().cast<RankedTensorType>();
auto resTy = dst.getType().cast<RankedTensorType>();
auto resElemTy = getTypeConverter()->convertType(resTy.getElementType());
auto srcBlockedLayout = srcTy.getEncoding().cast<BlockedEncodingAttr>();
auto resSharedLayout = resTy.getEncoding().cast<SharedEncodingAttr>();
auto srcShape = srcTy.getShape();
assert(srcShape.size() == 2 &&
"insert_slice_async: Unexpected rank of %src");
Value llDst = adaptor.dst();
Value llSrc = adaptor.src();
Value llMask = adaptor.mask();
Value llOther = adaptor.other();
Value llIndex = adaptor.index();
// %src
auto srcElems = getLLVMElems(src, llSrc, rewriter, loc);
// %dst
auto dstTy = dst.getType().cast<RankedTensorType>();
auto dstShape = dstTy.getShape();
auto smemObj = getSharedMemoryObjectFromStruct(loc, llDst, rewriter);
auto axis = op->getAttrOfType<IntegerAttr>("axis").getInt();
SmallVector<Value, 4> offsetVals;
SmallVector<Value, 4> srcStrides;
for (auto i = 0; i < dstShape.size(); ++i) {
if (i == axis) {
offsetVals.emplace_back(llIndex);
} else {
offsetVals.emplace_back(i32_val(0));
srcStrides.emplace_back(smemObj.strides[i]);
}
}
// Compute the offset based on the original dimensions of the shared
// memory object
auto dstOffset = dot(rewriter, loc, offsetVals, smemObj.strides);
auto dstPtrTy =
ptr_ty(getTypeConverter()->convertType(resTy.getElementType()), 3);
Value dstPtrBase = gep(dstPtrTy, smemObj.base, dstOffset);
// %mask
SmallVector<Value> maskElems;
if (llMask) {
maskElems = getLLVMElems(mask, llMask, rewriter, loc);
assert(srcElems.size() == maskElems.size());
}
// %other
SmallVector<Value> otherElems;
if (llOther) {
otherElems = getLLVMElems(other, llOther, rewriter, loc);
assert(srcElems.size() == otherElems.size());
}
unsigned inVec = getVectorSize(src);
unsigned outVec = resSharedLayout.getVec();
unsigned minVec = std::min(outVec, inVec);
unsigned numElems = getElemsPerThread(srcTy);
unsigned perPhase = resSharedLayout.getPerPhase();
unsigned maxPhase = resSharedLayout.getMaxPhase();
auto sizePerThread = srcBlockedLayout.getSizePerThread();
auto threadsPerCTA = getThreadsPerCTA(srcBlockedLayout);
auto inOrder = srcBlockedLayout.getOrder();
// If perPhase * maxPhase > threadsPerCTA, we will have elements
// that share the same tile indices. The index calculation will
// be cached.
auto numSwizzleRows = std::max<unsigned>(
(perPhase * maxPhase) / threadsPerCTA[inOrder[1]], 1);
// A sharedLayout encoding has a "vec" parameter.
// On the column dimension, if inVec > outVec, it means we have to divide
// single vector read into multiple ones
auto numVecCols = std::max<unsigned>(inVec / outVec, 1);
auto srcIndices = emitIndices(loc, rewriter, srcBlockedLayout, srcShape);
// <<tileVecIdxRow, tileVecIdxCol>, TileOffset>
DenseMap<std::pair<unsigned, unsigned>, Value> tileOffsetMap;
for (unsigned elemIdx = 0; elemIdx < numElems; elemIdx += minVec) {
// minVec = 2, inVec = 4, outVec = 2
// baseOffsetCol = 0 baseOffsetCol = 0
// tileVecIdxCol = 0 tileVecIdxCol = 1
// -/\- -/\-
// [|x x| |x x| x x x x x]
// [|x x| |x x| x x x x x]
// baseOffsetRow [|x x| |x x| x x x x x]
// [|x x| |x x| x x x x x]
auto vecIdx = elemIdx / minVec;
auto vecIdxCol = vecIdx % (sizePerThread[inOrder[0]] / minVec);
auto vecIdxRow = vecIdx / (sizePerThread[inOrder[0]] / minVec);
auto baseOffsetCol =
vecIdxCol / numVecCols * numVecCols * threadsPerCTA[inOrder[0]];
auto baseOffsetRow = vecIdxRow / numSwizzleRows * numSwizzleRows *
threadsPerCTA[inOrder[1]];
auto tileVecIdxCol = vecIdxCol % numVecCols;
auto tileVecIdxRow = vecIdxRow % numSwizzleRows;
if (!tileOffsetMap.count({tileVecIdxRow, tileVecIdxCol})) {
// Swizzling
// Since the swizzling index is related to outVec, and we know minVec
// already, inVec doesn't matter
//
// (Numbers represent row indices)
// Example1:
// outVec = 2, inVec = 2, minVec = 2
// outVec = 2, inVec = 4, minVec = 2
// | [1 2] [3 4] [5 6] ... |
// | [3 4] [1 2] [7 8] ... |
// | [5 6] [7 8] [1 2] ... |
// Example2:
// outVec = 4, inVec = 2, minVec = 2
// | [1 2 3 4] [5 6 7 8] [9 10 11 12] ... |
// | [5 6 7 8] [1 2 3 4] [13 14 15 16] ... |
// | [9 10 11 12] [13 14 15 16] [1 2 3 4] ... |
auto srcIdx = srcIndices[tileVecIdxRow * sizePerThread[inOrder[0]]];
Value phase = urem(udiv(srcIdx[inOrder[1]], i32_val(perPhase)),
i32_val(maxPhase));
// srcShape and smemObj.shape maybe different if smemObj is a
// slice of the original shared memory object.
// So we need to use the original shape to compute the offset
Value rowOffset = mul(srcIdx[inOrder[1]], srcStrides[inOrder[1]]);
Value colOffset =
add(srcIdx[inOrder[0]], i32_val(tileVecIdxCol * minVec));
Value swizzleIdx = udiv(colOffset, i32_val(outVec));
Value swizzleColOffset =
add(mul(xor_(swizzleIdx, phase), i32_val(outVec)),
urem(colOffset, i32_val(outVec)));
Value tileOffset = add(rowOffset, swizzleColOffset);
tileOffsetMap[{tileVecIdxRow, tileVecIdxCol}] =
gep(dstPtrTy, dstPtrBase, tileOffset);
}
// 16 * 8 = 128bits
auto maxBitWidth =
std::max<unsigned>(128, resElemTy.getIntOrFloatBitWidth());
auto vecBitWidth = resElemTy.getIntOrFloatBitWidth() * minVec;
auto bitWidth = std::min<unsigned>(maxBitWidth, vecBitWidth);
auto numWords = vecBitWidth / bitWidth;
auto numWordElems = bitWidth / resElemTy.getIntOrFloatBitWidth();
// Tune CG and CA here.
auto byteWidth = bitWidth / 8;
CacheModifier srcCacheModifier =
byteWidth == 16 ? CacheModifier::CG : CacheModifier::CA;
assert(byteWidth == 16 || byteWidth == 8 || byteWidth == 4);
auto resByteWidth = resElemTy.getIntOrFloatBitWidth() / 8;
Value tileOffset = tileOffsetMap[{tileVecIdxRow, tileVecIdxCol}];
Value baseOffset =
add(mul(i32_val(baseOffsetRow), srcStrides[inOrder[1]]),
i32_val(baseOffsetCol));
Value basePtr = gep(dstPtrTy, tileOffset, baseOffset);
for (size_t wordIdx = 0; wordIdx < numWords; ++wordIdx) {
PTXBuilder ptxBuilder;
auto wordElemIdx = wordIdx * numWordElems;
auto &copyAsyncOp =
*ptxBuilder.create<PTXCpAsyncLoadInstr>(srcCacheModifier);
auto *dstOperand =
ptxBuilder.newAddrOperand(basePtr, "r", wordElemIdx * resByteWidth);
auto *srcOperand =
ptxBuilder.newAddrOperand(srcElems[elemIdx + wordElemIdx], "l");
auto *copySize = ptxBuilder.newConstantOperand(byteWidth);
auto *srcSize = copySize;
if (llMask) {
// We don't use predicate in this case, setting src-size to 0
// if there's any mask. cp.async will automatically fill the
// remaining slots with 0 if cp-size > src-size.
auto pred = maskElems[elemIdx + wordElemIdx];
auto selectOp = select(pred, i32_val(byteWidth), i32_val(0));
srcSize = ptxBuilder.newOperand(selectOp, "r");
if (llOther) {
auto storeVecSize = 4;
auto remStoreElems = numWordElems % storeVecSize;
auto constraint =
resElemTy.getIntOrFloatBitWidth() <= 32 ? "r" : "l";
for (auto i = 0; i < numWordElems - remStoreElems;
i += storeVecSize) {
PTXBuilder ptxStoreBuilder;
auto *valOperands = ptxStoreBuilder.newListOperand();
for (auto s = 0; s < storeVecSize; ++s) {
auto value = otherElems[elemIdx + wordElemIdx + i + s];
auto *opr = ptxStoreBuilder.newOperand(value, constraint);
valOperands->listAppend(opr);
}
auto *storeDstOperand = ptxStoreBuilder.newAddrOperand(
basePtr, "r", (wordElemIdx + i) * resByteWidth);
auto &st = ptxStoreBuilder.create<PTXInstr>("st")->shared();
st.v(storeVecSize).b(resElemTy.getIntOrFloatBitWidth());
st(storeDstOperand, valOperands).predicate(pred);
ptxStoreBuilder.launch(rewriter, loc, void_ty(getContext()));
}
for (auto i = numWordElems - remStoreElems; i < numWordElems; ++i) {
PTXBuilder ptxStoreBuilder;
auto value = otherElems[elemIdx + wordElemIdx + i];
auto *storeValOperand =
ptxStoreBuilder.newOperand(value, constraint);
auto *storeDstOperand = ptxStoreBuilder.newAddrOperand(
basePtr, "r", (wordElemIdx + i) * resByteWidth);
auto &st = ptxStoreBuilder.create<PTXInstr>("st")->shared();
st.b(resElemTy.getIntOrFloatBitWidth());
st(storeDstOperand, storeValOperand).predicate(pred);
ptxStoreBuilder.launch(rewriter, loc, void_ty(getContext()));
}
}
}
copyAsyncOp(dstOperand, srcOperand, copySize, srcSize);
ptxBuilder.launch(rewriter, loc, void_ty(getContext()));
}
}
PTXBuilder ptxBuilder;
ptxBuilder.create<>("cp.async.commit_group")->operator()();
ptxBuilder.launch(rewriter, loc, void_ty(getContext()));
rewriter.replaceOp(op, llDst);
return success();
}
};
struct ExtElemwiseOpConversion
: public ElementwiseOpConversionBase<triton::ExtElemwiseOp,
ExtElemwiseOpConversion> {
using Base = ElementwiseOpConversionBase<triton::ExtElemwiseOp,
ExtElemwiseOpConversion>;
using Base::Base;
using Adaptor = typename Base::OpAdaptor;
Value createDestOp(triton::ExtElemwiseOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy,
ValueRange operands, Location loc) const {
StringRef funcName = op.symbol();
if (funcName.empty())
llvm::errs() << "ExtElemwiseOpConversion";
Type funcType = getFunctionType(elemTy, operands);
LLVM::LLVMFuncOp funcOp =
appendOrGetFuncOp(rewriter, op, funcName, funcType);
return rewriter.create<LLVM::CallOp>(loc, funcOp, operands).getResult(0);
}
private:
Type getFunctionType(Type resultType, ValueRange operands) const {
SmallVector<Type> operandTypes(operands.getTypes());
return LLVM::LLVMFunctionType::get(resultType, operandTypes);
}
LLVM::LLVMFuncOp appendOrGetFuncOp(ConversionPatternRewriter &rewriter,
triton::ExtElemwiseOp op,
StringRef funcName, Type funcType) const {
using LLVM::LLVMFuncOp;
auto funcAttr = StringAttr::get(op->getContext(), funcName);
Operation *funcOp = SymbolTable::lookupNearestSymbolFrom(op, funcAttr);
if (funcOp)
return cast<LLVMFuncOp>(*funcOp);
mlir::OpBuilder b(op->getParentOfType<LLVMFuncOp>());
auto ret = b.create<LLVMFuncOp>(op->getLoc(), funcName, funcType);
ret.getOperation()->setAttr(
"libname", StringAttr::get(op->getContext(), op.libname()));
ret.getOperation()->setAttr(
"libpath", StringAttr::get(op->getContext(), op.libpath()));
return ret;
}
};
struct FDivOpConversion
: ElementwiseOpConversionBase<mlir::arith::DivFOp, FDivOpConversion> {
using Base =
ElementwiseOpConversionBase<mlir::arith::DivFOp, FDivOpConversion>;
using Base::Base;
using Adaptor = typename Base::OpAdaptor;
Value createDestOp(mlir::arith::DivFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy,
ValueRange operands, Location loc) const {
PTXBuilder ptxBuilder;
auto &fdiv = *ptxBuilder.create<PTXInstr>("div");
unsigned bitwidth = elemTy.getIntOrFloatBitWidth();
if (32 == bitwidth) {
fdiv.o("full").o("f32");
} else if (64 == bitwidth) {
fdiv.o("rn").o("f64");
} else {
assert(0 && bitwidth && "not supported");
}
auto res = ptxBuilder.newOperand(bitwidth == 32 ? "=r" : "=l");
auto lhs = ptxBuilder.newOperand(operands[0], bitwidth == 32 ? "r" : "l");
auto rhs = ptxBuilder.newOperand(operands[1], bitwidth == 32 ? "r" : "l");
fdiv(res, lhs, rhs);
Value ret = ptxBuilder.launch(rewriter, loc, elemTy, false);
return ret;
}
};
struct ExpOpConversionApprox
: ElementwiseOpConversionBase<mlir::math::ExpOp, ExpOpConversionApprox> {
using Base =
ElementwiseOpConversionBase<mlir::math::ExpOp, ExpOpConversionApprox>;
using Base::Base;
using Adaptor = typename Base::OpAdaptor;
Value createDestOp(mlir::math::ExpOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter, Type elemTy,
ValueRange operands, Location loc) const {
// For FP64 input, call __nv_expf for higher-precision calculation
if (elemTy.getIntOrFloatBitWidth() == 64)
return {};
const double log2e = 1.4426950408889634;
Value prod =
rewriter.create<LLVM::FMulOp>(loc, f32_ty, operands[0], f32_val(log2e));
PTXBuilder ptxBuilder;
auto &exp2 = ptxBuilder.create<PTXInstr>("ex2")->o("approx").o("f32");
auto output = ptxBuilder.newOperand("=f");
auto input = ptxBuilder.newOperand(prod, "f");
exp2(output, input);
return ptxBuilder.launch(rewriter, loc, f32_ty, false);
}
};
/// ====================== atomic_cas codegen begin ==========================
struct AtomicCASOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::AtomicCASOp>,
public LoadStoreConversionBase {
using ConvertTritonGPUOpToLLVMPattern<
triton::AtomicCASOp>::ConvertTritonGPUOpToLLVMPattern;
AtomicCASOpConversion(LLVMTypeConverter &converter,
const Allocation *allocation, Value smem,
AxisInfoAnalysis &axisAnalysisPass,
PatternBenefit benefit)
: ConvertTritonGPUOpToLLVMPattern<triton::AtomicCASOp>(
converter, allocation, smem, benefit),
LoadStoreConversionBase(axisAnalysisPass) {}
LogicalResult
matchAndRewrite(triton::AtomicCASOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
MLIRContext *ctx = rewriter.getContext();
Value ptr = op.ptr();
Value llPtr = adaptor.ptr();
Value llCmp = adaptor.cmp();
Value llVal = adaptor.val();
auto ptrElements = getElementsFromStruct(loc, llPtr, rewriter);
auto cmpElements = getElementsFromStruct(loc, llCmp, rewriter);
auto valElements = getElementsFromStruct(loc, llVal, rewriter);
auto valueTy = op.getResult().getType().dyn_cast<RankedTensorType>();
Type valueElemTy =
valueTy ? getTypeConverter()->convertType(valueTy.getElementType())
: op.getResult().getType();
auto tid = tid_val();
Value pred = icmp_eq(tid, i32_val(0));
PTXBuilder ptxBuilderMemfence;
auto memfenc = ptxBuilderMemfence.create<PTXInstr>("membar")->o("gl");
memfenc();
auto ASMReturnTy = void_ty(ctx);
ptxBuilderMemfence.launch(rewriter, loc, ASMReturnTy);
Value atomPtr = getSharedMemoryBase(loc, rewriter, op.getOperation());
atomPtr = bitcast(atomPtr, ptr_ty(valueElemTy, 3));
Value casPtr = ptrElements[0];
Value casCmp = cmpElements[0];
Value casVal = valElements[0];
PTXBuilder ptxBuilderAtomicCAS;
auto *dstOpr = ptxBuilderAtomicCAS.newOperand("=r");
auto *ptrOpr = ptxBuilderAtomicCAS.newAddrOperand(casPtr, "l");
auto *cmpOpr = ptxBuilderAtomicCAS.newOperand(casCmp, "r");
auto *valOpr = ptxBuilderAtomicCAS.newOperand(casVal, "r");
auto &atom = *ptxBuilderAtomicCAS.create<PTXInstr>("atom");
atom.global().o("cas").o("b32");
atom(dstOpr, ptrOpr, cmpOpr, valOpr).predicate(pred);
auto old = ptxBuilderAtomicCAS.launch(rewriter, loc, valueElemTy);
barrier();
PTXBuilder ptxBuilderStore;
auto *dstOprStore = ptxBuilderStore.newAddrOperand(atomPtr, "l");
auto *valOprStore = ptxBuilderStore.newOperand(old, "r");
auto &st = *ptxBuilderStore.create<PTXInstr>("st");
st.shared().o("b32");
st(dstOprStore, valOprStore).predicate(pred);
ptxBuilderStore.launch(rewriter, loc, ASMReturnTy);
ptxBuilderMemfence.launch(rewriter, loc, ASMReturnTy);
barrier();
Value ret = load(atomPtr);
barrier();
rewriter.replaceOp(op, {ret});
return success();
}
};
/// ====================== atomic_cas codegen end ==========================
/// ====================== atomic_rmw codegen begin ==========================
struct AtomicRMWOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::AtomicRMWOp>,
public LoadStoreConversionBase {
using ConvertTritonGPUOpToLLVMPattern<
triton::AtomicRMWOp>::ConvertTritonGPUOpToLLVMPattern;
AtomicRMWOpConversion(LLVMTypeConverter &converter,
const Allocation *allocation, Value smem,
AxisInfoAnalysis &axisAnalysisPass,
PatternBenefit benefit)
: ConvertTritonGPUOpToLLVMPattern<triton::AtomicRMWOp>(
converter, allocation, smem, benefit),
LoadStoreConversionBase(axisAnalysisPass) {}
LogicalResult
matchAndRewrite(triton::AtomicRMWOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
MLIRContext *ctx = rewriter.getContext();
auto atomicRmwAttr = op.atomic_rmw_op();
Value ptr = op.ptr();
Value val = op.val();
Value llPtr = adaptor.ptr();
Value llVal = adaptor.val();
Value llMask = adaptor.mask();
auto valElements = getElementsFromStruct(loc, llVal, rewriter);
auto ptrElements = getElementsFromStruct(loc, llPtr, rewriter);
auto maskElements = getElementsFromStruct(loc, llMask, rewriter);
auto valueTy = op.getResult().getType().dyn_cast<RankedTensorType>();
Type valueElemTy =
valueTy ? getTypeConverter()->convertType(valueTy.getElementType())
: op.getResult().getType();
const size_t valueElemNbits = valueElemTy.getIntOrFloatBitWidth();
auto elemsPerThread = getElemsPerThread(val.getType());
// vec = 1 for scalar
auto vec = getVectorSize(ptr);
Value mask = int_val(1, 1);
auto tid = tid_val();
// tensor
if (valueTy) {
auto valTy = val.getType().cast<RankedTensorType>();
vec = std::min<unsigned>(vec, valTy.getElementType().isF16() ? 2 : 1);
// mask
auto shape = valueTy.getShape();
auto numElements = product(shape);
mask = and_(mask, icmp_slt(mul(tid, i32_val(elemsPerThread)),
i32_val(numElements)));
}
auto vecTy = vec_ty(valueElemTy, vec);
SmallVector<Value> resultVals(elemsPerThread);
for (size_t i = 0; i < elemsPerThread; i += vec) {
Value rmwVal = undef(vecTy);
for (int ii = 0; ii < vec; ++ii) {
Value iiVal = createIndexAttrConstant(
rewriter, loc, getTypeConverter()->getIndexType(), ii);
rmwVal = insert_element(vecTy, rmwVal, valElements[i + ii], iiVal);
}
Value rmwPtr = ptrElements[i];
Value rmwMask = maskElements[i];
rmwMask = and_(rmwMask, mask);
std::string sTy;
PTXBuilder ptxBuilderAtomicRMW;
std::string tyId = valueElemNbits * vec == 64
? "l"
: (valueElemNbits * vec == 32 ? "r" : "h");
auto *dstOpr = ptxBuilderAtomicRMW.newOperand("=" + tyId);
auto *ptrOpr = ptxBuilderAtomicRMW.newAddrOperand(rmwPtr, "l");
auto *valOpr = ptxBuilderAtomicRMW.newOperand(rmwVal, tyId);
auto &atom = ptxBuilderAtomicRMW.create<>("atom")->global().o("gpu");
auto rmwOp = stringifyRMWOp(atomicRmwAttr).str();
auto sBits = std::to_string(valueElemNbits);
switch (atomicRmwAttr) {
case RMWOp::AND:
sTy = "b" + sBits;
break;
case RMWOp::OR:
sTy = "b" + sBits;
break;
case RMWOp::XOR:
sTy = "b" + sBits;
break;
case RMWOp::ADD:
sTy = "s" + sBits;
break;
case RMWOp::FADD:
rmwOp = "add";
rmwOp += (valueElemNbits == 16 ? ".noftz" : "");
sTy = "f" + sBits;
sTy += (vec == 2 && valueElemNbits == 16) ? "x2" : "";
break;
case RMWOp::MAX:
sTy = "s" + sBits;
break;
case RMWOp::MIN:
sTy = "s" + sBits;
break;
case RMWOp::UMAX:
rmwOp = "max";
sTy = "u" + sBits;
break;
case RMWOp::UMIN:
rmwOp = "min";
sTy = "u" + sBits;
break;
case RMWOp::XCHG:
sTy = "b" + sBits;
break;
default:
return failure();
}
atom.o(rmwOp).o(sTy);
if (valueTy) {
atom(dstOpr, ptrOpr, valOpr).predicate(rmwMask);
auto ret = ptxBuilderAtomicRMW.launch(rewriter, loc, valueElemTy);
for (int ii = 0; ii < vec; ++ii) {
resultVals[i * vec + ii] =
vec == 1 ? ret : extract_element(valueElemTy, ret, idx_val(ii));
}
} else {
PTXBuilder ptxBuilderMemfence;
auto memfenc = ptxBuilderMemfence.create<PTXInstr>("membar")->o("gl");
memfenc();
auto ASMReturnTy = void_ty(ctx);
ptxBuilderMemfence.launch(rewriter, loc, ASMReturnTy);
rmwMask = and_(rmwMask, icmp_eq(tid, i32_val(0)));
atom(dstOpr, ptrOpr, valOpr).predicate(rmwMask);
auto old = ptxBuilderAtomicRMW.launch(rewriter, loc, valueElemTy);
Value atomPtr = getSharedMemoryBase(loc, rewriter, op.getOperation());
atomPtr = bitcast(atomPtr, ptr_ty(valueElemTy, 3));
store(old, atomPtr);
barrier();
Value ret = load(atomPtr);
barrier();
rewriter.replaceOp(op, {ret});
}
}
if (valueTy) {
Type structTy = getTypeConverter()->convertType(valueTy);
Value resultStruct =
getStructFromElements(loc, resultVals, rewriter, structTy);
rewriter.replaceOp(op, {resultStruct});
}
return success();
}
};
/// ====================== atomic_rmw codegen end ==========================
void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
RewritePatternSet &patterns, int numWarps,
AxisInfoAnalysis &axisInfoAnalysis,
const Allocation *allocation, Value smem,
PatternBenefit benefit = 1) {
patterns.add<AddPtrOpConversion>(typeConverter, benefit);
patterns.add<AllocTensorOpConversion>(typeConverter, allocation, smem,
benefit);
patterns.add<ArithConstantSplatOpConversion>(typeConverter, benefit);
patterns.add<AsyncWaitOpConversion>(typeConverter, benefit);
#define POPULATE_TERNARY_OP(SRC_OP, DST_OP) \
patterns.add<ElementwiseOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
POPULATE_TERNARY_OP(triton::gpu::SelectOp, LLVM::SelectOp);
#undef POPULATE_TERNARY_OP
#define POPULATE_BINARY_OP(SRC_OP, DST_OP) \
patterns.add<ElementwiseOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
POPULATE_BINARY_OP(arith::SubIOp, LLVM::SubOp) // -
POPULATE_BINARY_OP(arith::SubFOp, LLVM::FSubOp)
POPULATE_BINARY_OP(arith::AddIOp, LLVM::AddOp) // +
POPULATE_BINARY_OP(arith::AddFOp, LLVM::FAddOp)
POPULATE_BINARY_OP(arith::MulIOp, LLVM::MulOp) // *
POPULATE_BINARY_OP(arith::MulFOp, LLVM::FMulOp)
POPULATE_BINARY_OP(arith::DivFOp, LLVM::FDivOp) // /
POPULATE_BINARY_OP(arith::DivSIOp, LLVM::SDivOp)
POPULATE_BINARY_OP(arith::DivUIOp, LLVM::UDivOp)
POPULATE_BINARY_OP(arith::RemFOp, LLVM::FRemOp) // %
POPULATE_BINARY_OP(arith::RemSIOp, LLVM::SRemOp)
POPULATE_BINARY_OP(arith::RemUIOp, LLVM::URemOp)
POPULATE_BINARY_OP(arith::AndIOp, LLVM::AndOp) // &
POPULATE_BINARY_OP(arith::OrIOp, LLVM::OrOp) // |
POPULATE_BINARY_OP(arith::XOrIOp, LLVM::XOrOp) // ^
POPULATE_BINARY_OP(arith::ShLIOp, LLVM::ShlOp) // <<
POPULATE_BINARY_OP(arith::ShRSIOp, LLVM::AShrOp) // >>
POPULATE_BINARY_OP(arith::ShRUIOp, LLVM::LShrOp) // >>
#undef POPULATE_BINARY_OP
patterns.add<CmpIOpConversion>(typeConverter, benefit);
patterns.add<CmpFOpConversion>(typeConverter, benefit);
// ExpOpConversionApprox will try using ex2.approx if the input type is FP32.
// For FP64 input type, ExpOpConversionApprox will return failure and
// ElementwiseOpConversion<math::ExpOp, math::ExpOp> defined below will call
// __nv_expf for higher-precision calculation
patterns.add<ExpOpConversionApprox>(typeConverter, benefit);
#define POPULATE_UNARY_OP(SRC_OP, DST_OP) \
patterns.add<ElementwiseOpConversion<SRC_OP, DST_OP>>(typeConverter, benefit);
POPULATE_UNARY_OP(arith::TruncIOp, LLVM::TruncOp)
POPULATE_UNARY_OP(arith::TruncFOp, LLVM::FPTruncOp)
POPULATE_UNARY_OP(arith::ExtSIOp, LLVM::SExtOp)
POPULATE_UNARY_OP(arith::ExtUIOp, LLVM::ZExtOp)
POPULATE_UNARY_OP(arith::FPToUIOp, LLVM::FPToUIOp)
POPULATE_UNARY_OP(arith::FPToSIOp, LLVM::FPToSIOp)
POPULATE_UNARY_OP(arith::UIToFPOp, LLVM::UIToFPOp)
POPULATE_UNARY_OP(arith::SIToFPOp, LLVM::SIToFPOp)
POPULATE_UNARY_OP(arith::ExtFOp, LLVM::FPExtOp)
POPULATE_UNARY_OP(math::LogOp, math::LogOp)
POPULATE_UNARY_OP(math::CosOp, math::CosOp)
POPULATE_UNARY_OP(math::SinOp, math::SinOp)
POPULATE_UNARY_OP(math::SqrtOp, math::SqrtOp)
POPULATE_UNARY_OP(math::ExpOp, math::ExpOp)
POPULATE_UNARY_OP(triton::BitcastOp, LLVM::BitcastOp)
POPULATE_UNARY_OP(triton::IntToPtrOp, LLVM::IntToPtrOp)
POPULATE_UNARY_OP(triton::PtrToIntOp, LLVM::PtrToIntOp)
#undef POPULATE_UNARY_OP
patterns.add<FpToFpOpConversion>(typeConverter, benefit);
patterns.add<FDivOpConversion>(typeConverter, benefit);
patterns.add<ExtElemwiseOpConversion>(typeConverter, benefit);
patterns.add<BroadcastOpConversion>(typeConverter, benefit);
patterns.add<ReduceOpConversion>(typeConverter, allocation, smem, benefit);
patterns.add<ConvertLayoutOpConversion>(typeConverter, allocation, smem,
benefit);
patterns.add<AtomicCASOpConversion>(typeConverter, allocation, smem,
axisInfoAnalysis, benefit);
patterns.add<AtomicRMWOpConversion>(typeConverter, allocation, smem,
axisInfoAnalysis, benefit);
patterns.add<ExtractSliceOpConversion>(typeConverter, allocation, smem,
benefit);
patterns.add<GetProgramIdOpConversion>(typeConverter, benefit);
patterns.add<GetNumProgramsOpConversion>(typeConverter, benefit);
patterns.add<InsertSliceOpConversion>(typeConverter, allocation, smem,
benefit);
patterns.add<InsertSliceAsyncOpConversion>(typeConverter, allocation, smem,
axisInfoAnalysis, benefit);
patterns.add<LoadOpConversion>(typeConverter, axisInfoAnalysis, benefit);
patterns.add<MakeRangeOpConversion>(typeConverter, benefit);
patterns.add<ReturnOpConversion>(typeConverter, benefit);
patterns.add<SplatOpConversion>(typeConverter, benefit);
patterns.add<StoreOpConversion>(typeConverter, axisInfoAnalysis, benefit);
patterns.add<ViewLikeOpConversion<triton::ViewOp>>(typeConverter, benefit);
patterns.add<ViewLikeOpConversion<triton::ExpandDimsOp>>(typeConverter,
benefit);
patterns.add<DotOpConversion>(typeConverter, allocation, smem, benefit);
patterns.add<TransOpConversion>(typeConverter, benefit);
patterns.add<PrintfOpConversion>(typeConverter, benefit);
}
class ConvertTritonGPUToLLVM
: public ConvertTritonGPUToLLVMBase<ConvertTritonGPUToLLVM> {
private:
void decomposeBlockedToDotOperand(ModuleOp mod) {
// replace `blocked -> dot_op` with `blocked -> shared -> dot_op`
// because the codegen doesn't handle `blocked -> dot_op` directly
mod.walk([&](triton::gpu::ConvertLayoutOp cvtOp) -> void {
OpBuilder builder(cvtOp);
auto srcType = cvtOp.getOperand().getType().cast<RankedTensorType>();
auto dstType = cvtOp.getType().cast<RankedTensorType>();
auto srcBlocked =
srcType.getEncoding().dyn_cast<triton::gpu::BlockedEncodingAttr>();
auto dstDotOp =
dstType.getEncoding().dyn_cast<triton::gpu::DotOperandEncodingAttr>();
if (srcBlocked && dstDotOp) {
auto tmpType = RankedTensorType::get(
dstType.getShape(), dstType.getElementType(),
triton::gpu::SharedEncodingAttr::get(
mod.getContext(), dstDotOp, srcType.getShape(),
getOrder(srcBlocked), srcType.getElementType()));
auto tmp = builder.create<triton::gpu::ConvertLayoutOp>(
cvtOp.getLoc(), tmpType, cvtOp.getOperand());
auto newConvert = builder.create<triton::gpu::ConvertLayoutOp>(
cvtOp.getLoc(), dstType, tmp);
cvtOp.replaceAllUsesWith(newConvert.getResult());
cvtOp.erase();
}
});
}
void decomposeInsertSliceAsyncOp(ModuleOp mod) {
AxisInfoAnalysis axisInfoAnalysis(mod.getContext());
axisInfoAnalysis.run(mod);
// TODO(Keren): This is a hacky knob that may cause performance regression
// when decomposition has been performed. We should remove this knob once we
// have thorough analysis on async wait. Currently, we decompose
// `insert_slice_async` into `load` and `insert_slice` without knowing which
// `async_wait` is responsible for the `insert_slice_async`. To guarantee
// correctness, we blindly set the `async_wait` to wait for all async ops.
//
// There are two options to improve this:
// 1. We can perform a dataflow analysis to find the `async_wait` that is
// responsible for the `insert_slice_async` in the backend.
// 2. We can modify the pipeline to perform the decomposition before the
// `async_wait` is inserted. However, it is also risky because we don't know
// the correct vectorized shape yet in the pipeline pass. Making the
// pipeline pass aware of the vectorization could introduce additional
// dependencies on the AxisInfoAnalysis and the Coalesce analysis.
bool decomposed = false;
// insert_slice_async %src, %dst, %idx, %mask, %other
// =>
// %tmp = load %src, %mask, %other
// %res = insert_slice %tmp into %dst[%idx]
mod.walk([&](triton::gpu::InsertSliceAsyncOp insertSliceAsyncOp) -> void {
OpBuilder builder(insertSliceAsyncOp);
// Get the vectorized load size
auto src = insertSliceAsyncOp.src();
auto dst = insertSliceAsyncOp.dst();
auto srcTy = src.getType().cast<RankedTensorType>();
auto dstTy = dst.getType().cast<RankedTensorType>();
auto srcBlocked =
srcTy.getEncoding().dyn_cast<triton::gpu::BlockedEncodingAttr>();
auto resSharedLayout =
dstTy.getEncoding().dyn_cast<triton::gpu::SharedEncodingAttr>();
auto resElemTy = dstTy.getElementType();
unsigned inVec = axisInfoAnalysis.getPtrVectorSize(src);
unsigned outVec = resSharedLayout.getVec();
unsigned minVec = std::min(outVec, inVec);
auto maxBitWidth =
std::max<unsigned>(128, resElemTy.getIntOrFloatBitWidth());
auto vecBitWidth = resElemTy.getIntOrFloatBitWidth() * minVec;
auto bitWidth = std::min<unsigned>(maxBitWidth, vecBitWidth);
auto byteWidth = bitWidth / 8;
// If the load byte width is not eligible or the current compute
// capability does not support async copy, then we do decompose
if (triton::gpu::InsertSliceAsyncOp::getEligibleLoadByteWidth(
computeCapability)
.contains(byteWidth) &&
computeCapability >= 80)
return;
// load
auto tmpTy =
RankedTensorType::get(srcTy.getShape(), resElemTy, srcBlocked);
auto loadOp = builder.create<triton::LoadOp>(
insertSliceAsyncOp.getLoc(), tmpTy, insertSliceAsyncOp.src(),
insertSliceAsyncOp.mask(), insertSliceAsyncOp.other(),
insertSliceAsyncOp.cache(), insertSliceAsyncOp.evict(),
insertSliceAsyncOp.isVolatile());
// insert_slice
auto axis = insertSliceAsyncOp.axis();
auto intAttr = [&](int64_t v) { return builder.getI64IntegerAttr(v); };
auto offsets = SmallVector<OpFoldResult>(dstTy.getRank(), intAttr(0));
auto sizes = SmallVector<OpFoldResult>(dstTy.getRank(), intAttr(1));
auto strides = SmallVector<OpFoldResult>(dstTy.getRank(), intAttr(1));
offsets[axis] = insertSliceAsyncOp.index();
for (size_t i = 0; i < dstTy.getRank(); i++) {
if (i != axis)
sizes[i] = intAttr(dstTy.getShape()[i]);
}
auto insertSliceOp = builder.create<tensor::InsertSliceOp>(
insertSliceAsyncOp.getLoc(), loadOp, insertSliceAsyncOp.dst(),
offsets, sizes, strides);
// Replace
insertSliceAsyncOp.replaceAllUsesWith(insertSliceOp.getResult());
insertSliceAsyncOp.erase();
decomposed = true;
});
// async wait is supported in Ampere and later
mod.walk([&](triton::gpu::AsyncWaitOp asyncWaitOp) -> void {
if (computeCapability < 80) {
asyncWaitOp.erase();
} else if (decomposed) {
OpBuilder builder(asyncWaitOp);
// Wait for all previous async ops
auto newAsyncWaitOp = builder.create<triton::gpu::AsyncWaitOp>(
asyncWaitOp.getLoc(), builder.getI64IntegerAttr(0));
asyncWaitOp.erase();
}
});
}
public:
explicit ConvertTritonGPUToLLVM(int computeCapability)
: computeCapability(computeCapability) {}
void runOnOperation() override {
MLIRContext *context = &getContext();
ModuleOp mod = getOperation();
mlir::LowerToLLVMOptions option(context);
// TODO: need confirm
option.overrideIndexBitwidth(32);
TritonGPUToLLVMTypeConverter typeConverter(context, option);
TritonLLVMFunctionConversionTarget funcTarget(*context, typeConverter);
TritonLLVMConversionTarget target(*context, typeConverter);
int numWarps = triton::gpu::TritonGPUDialect::getNumWarps(mod);
// step 1: Decompose unoptimized layout conversions to use shared memory
// step 2: Decompose insert_slice_async to use load + insert_slice for
// pre-Ampere architectures or unsupported vectorized load sizes
// step 3: Allocate shared memories and insert barriers
// step 4: Convert SCF to CFG
// step 5: Convert FuncOp to LLVMFuncOp via partial conversion
// step 6: Convert the rest of ops via partial
// conversion The reason for putting step 1 before step 2 is that the membar
// analysis currently only supports SCF but not CFG. The reason for a
// separation between 1/4 is that, step 3 is out of the scope of Dialect
// Conversion, thus we need to make sure the smem is not revised during the
// conversion of step 4.
decomposeBlockedToDotOperand(mod);
decomposeInsertSliceAsyncOp(mod);
Allocation allocation(mod);
MembarAnalysis membarPass(&allocation);
membarPass.run();
RewritePatternSet scf_patterns(context);
mlir::populateLoopToStdConversionPatterns(scf_patterns);
mlir::ConversionTarget scf_target(*context);
scf_target.addIllegalOp<scf::ForOp, scf::IfOp, scf::ParallelOp,
scf::WhileOp, scf::ExecuteRegionOp>();
scf_target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
if (failed(
applyPartialConversion(mod, scf_target, std::move(scf_patterns))))
return signalPassFailure();
RewritePatternSet func_patterns(context);
func_patterns.add<FuncOpConversion>(typeConverter, numWarps, 1 /*benefit*/);
if (failed(
applyPartialConversion(mod, funcTarget, std::move(func_patterns))))
return signalPassFailure();
auto axisAnalysis = runAxisAnalysis(mod);
initSharedMemory(allocation.getSharedMemorySize(), typeConverter);
mod->setAttr("triton_gpu.shared",
mlir::IntegerAttr::get(mlir::IntegerType::get(context, 32),
allocation.getSharedMemorySize()));
// We set a higher benefit here to ensure triton's patterns runs before
// arith patterns for some encoding not supported by the community
// patterns.
RewritePatternSet patterns(context);
populateTritonToLLVMPatterns(typeConverter, patterns, numWarps,
*axisAnalysis, &allocation, smem,
10 /*benefit*/);
// Add arith/math's patterns to help convert scalar expression to LLVM.
mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
patterns);
mlir::populateMathToLLVMConversionPatterns(typeConverter, patterns);
mlir::populateStdToLLVMConversionPatterns(typeConverter, patterns);
mlir::populateGpuToNVVMConversionPatterns(typeConverter, patterns);
if (failed(applyPartialConversion(mod, target, std::move(patterns))))
return signalPassFailure();
}
protected:
std::unique_ptr<AxisInfoAnalysis> runAxisAnalysis(ModuleOp module) {
auto axisAnalysisPass =
std::make_unique<AxisInfoAnalysis>(module->getContext());
axisAnalysisPass->run(module);
return axisAnalysisPass;
}
void initSharedMemory(size_t size,
TritonGPUToLLVMTypeConverter &typeConverter);
Value smem;
int computeCapability{};
};
void ConvertTritonGPUToLLVM::initSharedMemory(
size_t size, TritonGPUToLLVMTypeConverter &typeConverter) {
ModuleOp mod = getOperation();
OpBuilder b(mod.getBodyRegion());
auto loc = mod.getLoc();
auto elemTy = typeConverter.convertType(b.getIntegerType(8));
// Set array size 0 and external linkage indicates that we use dynamic
// shared allocation to allow a larger shared memory size for each kernel.
auto arrayTy = LLVM::LLVMArrayType::get(elemTy, 0);
auto global = b.create<LLVM::GlobalOp>(
loc, arrayTy, /*isConstant=*/false, LLVM::Linkage::External,
"global_smem", /*value=*/Attribute(),
/*alignment=*/0, mlir::gpu::GPUDialect::getWorkgroupAddressSpace());
SmallVector<LLVM::LLVMFuncOp> funcs;
mod.walk([&](LLVM::LLVMFuncOp func) { funcs.push_back(func); });
assert(funcs.size() == 1 &&
"Inliner pass is expected before TritonGPUToLLVM");
b.setInsertionPointToStart(&funcs[0].getBody().front());
smem = b.create<LLVM::AddressOfOp>(loc, global);
auto ptrTy =
LLVM::LLVMPointerType::get(typeConverter.convertType(b.getI8Type()), 3);
smem = b.create<LLVM::BitcastOp>(loc, ptrTy, smem);
}
} // namespace
namespace mlir {
namespace LLVM {
void vprintf(StringRef msg, ValueRange args,
ConversionPatternRewriter &rewriter) {
PrintfOpConversion::llPrintf(msg, args, rewriter);
}
void vprintf_array(Value thread, ArrayRef<Value> arr, std::string info,
std::string elem_repr, ConversionPatternRewriter &builder) {
std::string fmt = info + " t-%d ";
std::vector<Value> new_arr({thread});
for (int i = 0; i < arr.size(); ++i) {
fmt += elem_repr + ((i == arr.size() - 1) ? "" : ", ");
new_arr.push_back(arr[i]);
}
vprintf(fmt, new_arr, builder);
}
} // namespace LLVM
TritonLLVMConversionTarget::TritonLLVMConversionTarget(
MLIRContext &ctx, mlir::LLVMTypeConverter &typeConverter)
: ConversionTarget(ctx) {
addLegalDialect<LLVM::LLVMDialect>();
addLegalDialect<NVVM::NVVMDialect>();
// addIllegalDialect<triton::TritonDialect>();
// addIllegalDialect<triton::gpu::TritonGPUDialect>();
addIllegalDialect<mlir::gpu::GPUDialect>();
addIllegalDialect<mlir::StandardOpsDialect>();
addLegalOp<mlir::UnrealizedConversionCastOp>();
}
TritonLLVMFunctionConversionTarget::TritonLLVMFunctionConversionTarget(
MLIRContext &ctx, mlir::LLVMTypeConverter &typeConverter)
: ConversionTarget(ctx) {
addLegalDialect<LLVM::LLVMDialect>();
// addLegalDialect<NVVM::NVVMDialect>();
addIllegalOp<mlir::FuncOp>();
addLegalOp<mlir::UnrealizedConversionCastOp>();
}
namespace triton {
std::unique_ptr<OperationPass<ModuleOp>>
createConvertTritonGPUToLLVMPass(int computeCapability) {
return std::make_unique<::ConvertTritonGPUToLLVM>(computeCapability);
}
} // namespace triton
} // namespace mlir