Files
triton/python/tests/test_blocksparse.py

189 lines
6.9 KiB
Python

import pytest
import torch
import triton
# TODO: float32 fails
@pytest.mark.parametrize("MODE", ["sdd", "dds", "dsd"])
@pytest.mark.parametrize("TRANS_B", [False, True])
@pytest.mark.parametrize("TRANS_A", [False, True])
@pytest.mark.parametrize("BLOCK", [16, 32, 64])
@pytest.mark.parametrize("DTYPE", [torch.float16])
def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE, Z=3, H=2, M=512, N=256, K=384):
seed = 0
torch.manual_seed(seed)
is_sdd = MODE == "sdd"
is_dsd = MODE == "dsd"
is_dds = MODE == "dds"
do_sparsify = lambda x: triton.testing.sparsify_tensor(x, layout, BLOCK)
do_mask = lambda x: triton.testing.mask_tensor(x, layout, BLOCK)
# create inputs
# create op
a_shape = (Z, H, K, M) if TRANS_A else (Z, H, M, K)
b_shape = (Z, H, N, K) if TRANS_B else (Z, H, K, N)
c_shape = (Z, H, M, N)
shape = {
"sdd": (M, N),
"dsd": (a_shape[2], a_shape[3]),
"dds": (b_shape[2], b_shape[3]),
}[MODE]
layout = torch.randint(2, (H, shape[0] // BLOCK, shape[1] // BLOCK))
layout[1, 2, :] = 0
layout[1, :, 1] = 0
# create data
a_ref, a_tri = triton.testing.make_pair(a_shape, alpha=.1, dtype=DTYPE)
b_ref, b_tri = triton.testing.make_pair(b_shape, alpha=.1, dtype=DTYPE)
dc_ref, dc_tri = triton.testing.make_pair(c_shape, dtype=DTYPE)
# compute [torch]
dc_ref = do_mask(dc_ref) if is_sdd else dc_ref
a_ref = do_mask(a_ref) if is_dsd else a_ref
b_ref = do_mask(b_ref) if is_dds else b_ref
a_ref.requires_grad_().retain_grad()
b_ref.requires_grad_().retain_grad()
c_ref = torch.matmul(a_ref.transpose(2, 3) if TRANS_A else a_ref,
b_ref.transpose(2, 3) if TRANS_B else b_ref)
c_ref.backward(dc_ref)
c_ref = do_sparsify(c_ref) if is_sdd else c_ref
da_ref = do_sparsify(a_ref.grad) if is_dsd else a_ref.grad
db_ref = do_sparsify(b_ref.grad) if is_dds else b_ref.grad
# triton result
dc_tri = do_sparsify(dc_tri) if is_sdd else dc_tri
a_tri = do_sparsify(a_tri) if is_dsd else a_tri
b_tri = do_sparsify(b_tri) if is_dds else b_tri
a_tri.requires_grad_().retain_grad()
b_tri.requires_grad_().retain_grad()
op = triton.ops.blocksparse.matmul(layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B, device="cuda")
c_tri = triton.testing.catch_oor(lambda: op(a_tri, b_tri), pytest)
triton.testing.catch_oor(lambda: c_tri.backward(dc_tri), pytest)
da_tri = a_tri.grad
db_tri = b_tri.grad
# compare
triton.testing.assert_almost_equal(c_ref, c_tri)
triton.testing.assert_almost_equal(da_ref, da_tri)
triton.testing.assert_almost_equal(db_ref, db_tri)
configs = [
(16, 256),
(32, 576),
(64, 1871),
(128, 2511),
]
@pytest.mark.parametrize("is_dense", [False, True])
@pytest.mark.parametrize("BLOCK, WIDTH", configs)
def test_softmax(BLOCK, WIDTH, is_dense, Z=2, H=2, is_causal=True, scale=0.4):
# set seed
torch.random.manual_seed(0)
Z, H, M, N = 2, 3, WIDTH, WIDTH
# initialize layout
# make sure each row has at least one non-zero element
layout = torch.randint(2, (H, M // BLOCK, N // BLOCK))
if is_dense:
layout[:] = 1
else:
layout[1, 2, :] = 0
layout[1, :, 1] = 0
# initialize data
a_shape = (Z, H, M, N)
a_ref, a_tri = triton.testing.make_pair(a_shape)
dout_ref, dout_tri = triton.testing.make_pair(a_shape)
# compute [torch]
a_ref = triton.testing.mask_tensor(a_ref, layout, BLOCK, value=float("-inf"))
a_ref.retain_grad()
at_mask = torch.ones((M, N), device="cuda")
if is_causal:
at_mask = torch.tril(at_mask)
M = at_mask[None, None, :, :] + torch.zeros_like(a_ref)
a_ref[M == 0] = float("-inf")
out_ref = torch.softmax(a_ref * scale, -1)
out_ref.backward(dout_ref)
out_ref = triton.testing.sparsify_tensor(out_ref, layout, BLOCK)
da_ref = triton.testing.sparsify_tensor(a_ref.grad, layout, BLOCK)
# compute [triton]
a_tri = triton.testing.sparsify_tensor(a_tri, layout, BLOCK)
a_tri.retain_grad()
dout_tri = triton.testing.sparsify_tensor(dout_tri, layout, BLOCK)
op = triton.ops.blocksparse.softmax(layout, BLOCK, device="cuda", is_dense=is_dense)
out_tri = op(a_tri, scale=scale, is_causal=is_causal)
out_tri.backward(dout_tri)
da_tri = a_tri.grad
# compare
triton.testing.assert_almost_equal(out_tri, out_ref)
triton.testing.assert_almost_equal(da_tri, da_ref)
@pytest.mark.parametrize("block", [16, 32, 64])
@pytest.mark.parametrize("dtype", [torch.float16])
def test_attention_fwd_bwd(
block,
dtype,
input_scale=1.0,
scale=1 / 8.0,
n_ctx=256,
batch_size=2,
n_heads=2,
):
# inputs
qkv_shape = (batch_size, n_heads, n_ctx, 64)
qkvs = [
torch.nn.Parameter(input_scale * torch.randn(qkv_shape), requires_grad=True).to(dtype).cuda() for _ in range(3)
]
# Triton:
n_blocks = n_ctx // block
layout = torch.tril(torch.ones([n_heads, n_blocks, n_blocks], dtype=torch.long))
query, key, value = [x.clone() for x in qkvs]
query.retain_grad()
key.retain_grad()
value.retain_grad()
attn_out = triton_attention(layout, block, query=query, key=key, value=value, scale=scale)
# ad hoc loss
loss = (attn_out ** 2).mean()
loss.backward()
grads = [query.grad, key.grad, value.grad]
# Torch version:
torch_q, torch_k, torch_v = [x.clone() for x in qkvs]
attn_mask = torch.ones([n_ctx, n_ctx], device="cuda", dtype=dtype)
attn_mask = torch.tril(attn_mask, diagonal=0)
attn_mask = 1e6 * (-1 + (attn_mask.reshape((1, 1, n_ctx, n_ctx)).cuda()))
torch_q.retain_grad()
torch_k.retain_grad()
torch_v.retain_grad()
scores = scale * torch.einsum("bhsd,bhtd->bhst", torch_q, torch_k)
scores = scores + attn_mask
probs = torch.softmax(scores, dim=-1)
torch_attn_out = torch.einsum("bhst,bhtd->bhsd", probs, torch_v)
# ad hoc loss
torch_loss = (torch_attn_out ** 2).mean()
torch_loss.backward()
torch_grads = [torch_q.grad, torch_k.grad, torch_v.grad]
# comparison
# print(f"Triton loss {loss} and torch loss {torch_loss}. Also checking grads...")
triton.testing.assert_almost_equal(loss, torch_loss)
for g1, g2 in zip(grads, torch_grads):
triton.testing.assert_almost_equal(g1, g2)
@pytest.mark.parametrize("block", [16, 32, 64])
def triton_attention(
layout,
block: int,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
):
sparse_dot_sdd_nt = triton.ops.blocksparse.matmul(layout, block, "sdd", trans_a=False, trans_b=True, device=value.device)
sparse_dot_dsd_nn = triton.ops.blocksparse.matmul(layout, block, "dsd", trans_a=False, trans_b=False, device=value.device)
sparse_softmax = triton.ops.blocksparse.softmax(layout, block, device=value.device)
w = sparse_dot_sdd_nt(query, key)
w = sparse_softmax(w, scale=scale, is_causal=True)
a = sparse_dot_dsd_nn(w, value)
return a