Files
triton/test/Analysis/test-membar.mlir
Keren Zhou c280ebda1b [Triton-MLIR][BACKEND] Fix the membar pass to add missing barriers caused by scf.for (#933)
1. Add missing barriers and revert the previous temporary solution
2. Extract the `run` method from membar analysis because the membar
analysis should have two phases, including construction, which doesn't
modify any IR, and modification, which adds barrier IRs. Hope this could
make the use of membar clear.
2022-12-01 11:54:18 -08:00

319 lines
18 KiB
MLIR

// RUN: triton-opt %s -split-input-file --mlir-disable-threading -test-print-membar 2>&1 | FileCheck %s
#AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
#sliceAd0 = #triton_gpu.slice<{dim = 0, parent = #AL}>
#BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}>
#A_SHARED = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
#B_SHARED = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
#C = #triton_gpu.mma<{version = 2, warpsPerCTA = [4, 1]}>
#A_DOT = #triton_gpu.dot_op<{opIdx = 0, parent = #C}>
#B_DOT = #triton_gpu.dot_op<{opIdx = 1, parent = #C}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: matmul_loop
// There shouldn't be any membar with the dot op encoding.
func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
%a_ptr_init = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
%b_ptr_init = tt.broadcast %B : (!tt.ptr<f16>) -> tensor<32x128x!tt.ptr<f16>, #BL>
%a_mask = arith.constant dense<true> : tensor<128x32xi1, #AL>
%a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL>
%b_mask = arith.constant dense<true> : tensor<32x128xi1, #BL>
%b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL>
%c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C>
%a_off = arith.constant dense<4> : tensor<128x32xi32, #AL>
%b_off = arith.constant dense<4> : tensor<32x128xi32, #BL>
scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>) {
%a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
%a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A_DOT>
%b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL>
%b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B_DOT>
%c = tt.dot %a, %b, %prev_c {allowTF32 = true, transA = false, transB = false} : tensor<128x32xf16, #A_DOT> * tensor<32x128xf16, #B_DOT> -> tensor<128x128xf32, #C>
%next_a_ptr = tt.addptr %a_ptr, %a_off : tensor<128x32x!tt.ptr<f16>, #AL>
%next_b_ptr = tt.addptr %b_ptr, %b_off : tensor<32x128x!tt.ptr<f16>, #BL>
scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>
}
return
}
// CHECK-LABEL: raw_single_block
func @raw_single_block(%A : !tt.ptr<f16>) {
%cst1 = arith.constant dense<true> : tensor<128x32xi1, #AL>
%cst2 = arith.constant dense<0.000000e+00> : tensor<128x32xf16, #AL>
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
%a1_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
%a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A_SHARED>
// CHECK: Membar 5
%a2 = triton_gpu.convert_layout %a1 : (tensor<128x32xf16, #A_SHARED>) -> tensor<128x32xf16, #A_SHARED>
return
}
// CHECK-LABEL: war_single_block
func @war_single_block(%A : !tt.ptr<f16>) {
%cst1 = arith.constant dense<true> : tensor<128x32xi1, #AL>
%cst2 = arith.constant dense<0.000000e+00> : tensor<128x32xf16, #AL>
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
%a1_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
%a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A_SHARED>
// CHECK: Membar 5
%a2 = triton_gpu.convert_layout %a1 : (tensor<128x32xf16, #A_SHARED>) -> tensor<128x32xf16, #AL>
// a2's liveness range ends here, and a3 and a2 have the same address range.
// So it makes sense to have a WAR dependency between a2 and a3.
// CHECK-NEXT: Membar 7
%a3 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A_SHARED>
return
}
// CHECK-LABEL: scratch
func @scratch() {
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
// CHECK: Membar 1
%a = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
// CHECK-NEXT: Membar 3
%aa = triton_gpu.convert_layout %a : (tensor<32x16xf16, #A_SHARED>) -> tensor<32x16xf16, #AL>
%b = tt.reduce %aa {redOp = 1 : i32, axis = 0 : i32} : tensor<32x16xf16, #AL> -> tensor<16xf16, #sliceAd0>
return
}
// CHECK-LABEL: async_wait
func @async_wait() {
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
// CHECK: Membar 1
%a = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
triton_gpu.async_wait {num = 4 : i32}
// CHECK-NEXT: Membar 4
%a_ = triton_gpu.convert_layout %a : (tensor<32x16xf16, #A_SHARED>) -> tensor<32x16xf16, #AL>
return
}
// CHECK-LABEL: alloc
func @alloc() {
%cst0 = triton_gpu.alloc_tensor : tensor<16x16xf16, #A_SHARED>
%a = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
// CHECK: Membar 2
%b = triton_gpu.convert_layout %a : (tensor<32x16xf16, #A_SHARED>) -> tensor<32x16xf16, #AL>
return
}
// CHECK-LABEL: extract_slice
func @extract_slice() {
%cst0 = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A_SHARED>
%index = arith.constant 0 : index
%cst1 = tensor.extract_slice %cst0[%index, 0, 0][1, 16, 16][1, 1, 1] : tensor<1x16x16xf16, #A_SHARED> to tensor<16x16xf16, #A_SHARED>
// CHECK: Membar 3
%cst2 = triton_gpu.convert_layout %cst1 : (tensor<16x16xf16, #A_SHARED>) -> tensor<16x16xf16, #AL>
// CHECK-NEXT: Membar 5
%cst3 = triton_gpu.convert_layout %cst2 : (tensor<16x16xf16, #AL>) -> tensor<16x16xf16, #A_SHARED>
return
}
// CHECK-LABEL: insert_slice_async
func @insert_slice_async(%A : !tt.ptr<f16>, %i1 : i1) {
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<16x16x!tt.ptr<f16>, #AL>
%mask = tt.splat %i1 : (i1) -> tensor<16x16xi1, #AL>
%other = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL>
%tensor = triton_gpu.alloc_tensor : tensor<1x16x16xf16, #A_SHARED>
%index = arith.constant 0 : i32
%a = triton_gpu.insert_slice_async %a_ptr, %tensor, %index, %mask, %other {axis = 0 : i32, cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<16x16x!tt.ptr<f16>, #AL> -> tensor<1x16x16xf16, #A_SHARED>
// CHECK: Membar 6
%b = tt.cat %a, %a {axis = 0} : (tensor<1x16x16xf16, #A_SHARED>, tensor<1x16x16xf16, #A_SHARED>) -> tensor<2x16x16xf16, #A_SHARED>
// CHECK: Membar 8
%c = tt.cat %b, %b {axis = 0} : (tensor<2x16x16xf16, #A_SHARED>, tensor<2x16x16xf16, #A_SHARED>) -> tensor<4x16x16xf16, #A_SHARED>
return
}
// CHECK-LABEL: insert_slice
func @insert_slice(%A : !tt.ptr<f16>, %i1 : i1) {
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<16x16x!tt.ptr<f16>, #AL>
%mask = tt.splat %i1 : (i1) -> tensor<16x16xi1, #AL>
%other = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL>
%tensor = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A_SHARED>
%index = arith.constant 0 : index
%al = tt.load %a_ptr, %mask, %other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<16x16xf16, #AL>
// CHECK: Membar 6
%a = tensor.insert_slice %al into %tensor[%index, 0, 0][1, 16, 16][1, 1, 1]: tensor<16x16xf16, #AL> into tensor<1x16x16xf16, #A_SHARED>
// CHECK: Membar 8
%b = tt.cat %a, %a {axis = 0} : (tensor<1x16x16xf16, #A_SHARED>, tensor<1x16x16xf16, #A_SHARED>) -> tensor<2x16x16xf16, #A_SHARED>
// CHECK: Membar 10
%c = tt.cat %b, %b {axis = 0} : (tensor<2x16x16xf16, #A_SHARED>, tensor<2x16x16xf16, #A_SHARED>) -> tensor<4x16x16xf16, #A_SHARED>
return
}
// If branch inserted a barrier for %cst0 and %cst1, but else didn't, then the barrier should be inserted in the parent region
// CHECK-LABEL: multi_blocks
func @multi_blocks(%i1 : i1) {
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
scf.if %i1 {
// CHECK: Membar 2
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield
} else {
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
%cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
// CHECK-NEXT: Membar 7
%b = tt.cat %cst2, %cst3 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield
}
// CHECK-NEXT: Membar 10
%c = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
return
}
// Both branches inserted a barrier for %cst0 and %cst1, then the barrier doesn't need to be inserted in the parent region
// CHECK-LABEL: multi_blocks_join_barrier
func @multi_blocks_join_barrier(%i1 : i1) {
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
scf.if %i1 {
// CHECK: Membar 2
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield
} else {
// CHECK-NEXT: Membar 5
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield
}
%a_ = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #A_SHARED>) -> tensor<16x16xf16, #AL>
return
}
// Read yielded tensor requires a barrier
// CHECK-LABEL: multi_blocks_yield
func @multi_blocks_yield(%i1 : i1) {
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
%a = scf.if %i1 -> (tensor<32x16xf16, #A_SHARED>) {
// CHECK: Membar 2
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield %a : tensor<32x16xf16, #A_SHARED>
} else {
// CHECK-NEXT: Membar 5
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield %b : tensor<32x16xf16, #A_SHARED>
}
%a_ = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #A_SHARED>) -> tensor<16x16xf16, #AL>
// CHECK-NEXT: Membar 9
%b = tt.cat %a, %a {axis = 0} : (tensor<32x16xf16, #A_SHARED>, tensor<32x16xf16, #A_SHARED>) -> tensor<64x16xf16, #A_SHARED>
return
}
// Conservatively add a barrier as if the branch (%i1) is never taken
// CHECK-LABEL: multi_blocks_noelse
func @multi_blocks_noelse(%i1 : i1) {
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
scf.if %i1 {
// CHECK: Membar 2
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield
}
%a_ = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #A_SHARED>) -> tensor<16x16xf16, #AL>
return
}
// Conservatively add a barrier as if the branch (%i2) is never taken
// CHECK-LABEL: multi_blocks_nested_scf
func @multi_blocks_nested_scf(%i1 : i1, %i2 : i1) {
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
scf.if %i1 {
scf.if %i2 {
// CHECK: Membar 2
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield
}
scf.yield
} else {
// CHECK-NEXT: Membar 6
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
scf.yield
}
// CHECK-NEXT: Membar 9
%a_ = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #A_SHARED>) -> tensor<16x16xf16, #AL>
return
}
// CHECK-LABEL: for
func @for(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) {
// CHECK-NEXT: Membar 3
%cst0 = tt.cat %a_shared, %b_shared {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #A_SHARED>
scf.yield %b_shared, %a_shared, %a_shared : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>
}
return
}
// Although a_shared and b_shared are synced before entering the loop,
// they are reassociated with aliases (c_shared) and thus require a barrier.
// CHECK-LABEL: for_alias
func @for_alias(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
// CHECK-NEXT: Membar 2
%cst0 = tt.cat %a_shared_init, %b_shared_init {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #A_SHARED>
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) {
%cst1 = tt.cat %a_shared_init, %b_shared_init {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #AL>
// CHECK-NEXT: Membar 6
%cst2 = tt.cat %a_shared, %b_shared {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #AL>
scf.yield %c_shared, %a_shared, %b_shared : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>
}
// CHECK-NEXT: Membar 9
%cst3 = tt.cat %cst0, %cst0 {axis = 0} : (tensor<256x32xf16, #A_SHARED>, tensor<256x32xf16, #A_SHARED>) -> tensor<512x32xf16, #A_SHARED>
return
}
// Although cst2 is not an argument of scf.yield, its memory is reused by cst1.
// So we need a barrier both before and after cst1
// CHECK-LABEL: for_reuse
func @for_reuse(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
// CHECK-NEXT: Membar 2
%cst0 = tt.cat %a_shared_init, %b_shared_init {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #A_SHARED>
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) {
// CHECK-NEXT: Membar 5
%cst1 = tt.cat %a_shared_init, %b_shared_init {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #A_SHARED>
// CHECK-NEXT: Membar 7
%cst2 = tt.cat %a_shared, %b_shared {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #A_SHARED>
scf.yield %c_shared, %a_shared, %b_shared : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>
}
// CHECK-NEXT: Membar 10
%cst3 = tt.cat %cst0, %cst0 {axis = 0} : (tensor<256x32xf16, #A_SHARED>, tensor<256x32xf16, #A_SHARED>) -> tensor<512x32xf16, #A_SHARED>
return
}
// CHECK-LABEL: for_reuse_nested
func @for_reuse_nested(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
// CHECK-NEXT: Membar 2
%cst0 = tt.cat %a_shared_init, %b_shared_init {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #A_SHARED>
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) {
// CHECK-NEXT: Membar 5
%cst1 = tt.cat %a_shared_init, %b_shared_init {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #A_SHARED>
%a_shared_next, %b_shared_next, %c_shared_next = scf.for %ivv = %lb to %ub step %step iter_args(%a_shared_nested = %a_shared_init, %b_shared_nested = %b_shared_init, %c_shared_nested = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) {
// CHECK-NEXT: Membar 7
%cst2 = tt.cat %a_shared_nested, %b_shared_nested {axis = 0} : (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) -> tensor<256x32xf16, #A_SHARED>
scf.yield %c_shared_nested, %a_shared_nested, %b_shared_nested : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>
}
scf.yield %c_shared, %a_shared, %b_shared : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>
}
// CHECK-NEXT: Membar 11
%cst3 = tt.cat %cst0, %cst0 {axis = 0} : (tensor<256x32xf16, #A_SHARED>, tensor<256x32xf16, #A_SHARED>) -> tensor<512x32xf16, #A_SHARED>
return
}
}