1. Improve pipline's comment 2. Decompose insert_slice_async when load vector size is not supported 3. Add a test that could fail our gemm code Copy my comments here: There's a knob that may cause performance regression when decomposition has been performed. We should remove this knob once we have thorough analysis on async wait. Currently, we decompose `insert_slice_async` into `load` and `insert_slice` without knowing which `async_wait` is responsible for the `insert_slice_async`. To guarantee correctness, we blindly set the `async_wait` to wait for all async ops if any `insert_slice_async` has been decomposed. There are two options to improve this: 1. We can perform a dataflow analysis to find the `async_wait` that is responsible for the `insert_slice_async` in the backend. 4. We can modify the pipeline to perform the decomposition before the `async_wait` is inserted. However, it is also risky because we don't know the correct vectorized shape yet in the pipeline pass. Making the pipeline pass aware of the vectorization could introduce additional dependencies on the AxisInfoAnalysis and the Coalesce analysis.
347 lines
12 KiB
C++
347 lines
12 KiB
C++
#include "triton/Dialect/Triton/IR/Dialect.h"
|
|
#include "triton/Dialect/Triton/IR/Types.h"
|
|
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/OperationSupport.h"
|
|
|
|
namespace mlir {
|
|
namespace triton {
|
|
|
|
// Type inference
|
|
static Type getI1SameShape(Type type) {
|
|
auto i1Type = IntegerType::get(type.getContext(), 1);
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>())
|
|
return RankedTensorType::get(tensorType.getShape(), i1Type,
|
|
tensorType.getEncoding());
|
|
return i1Type;
|
|
}
|
|
|
|
static Type getI32SameShape(Type type) {
|
|
auto i32Type = IntegerType::get(type.getContext(), 32);
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>())
|
|
return RankedTensorType::get(tensorType.getShape(), i32Type,
|
|
tensorType.getEncoding());
|
|
return i32Type;
|
|
}
|
|
|
|
static Type getPointerTypeSameShape(Type type) {
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
|
Type elementType = tensorType.getElementType();
|
|
auto shape = tensorType.getShape();
|
|
PointerType ptrType = PointerType::get(elementType, 1);
|
|
return RankedTensorType::get(shape, ptrType, tensorType.getEncoding());
|
|
} else {
|
|
return PointerType::get(type, 1);
|
|
}
|
|
}
|
|
|
|
// Parser & printer for assembly forms
|
|
ParseResult parseLoadOp(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::OperandType, 4> allOperands;
|
|
Type resultTypes[1];
|
|
SMLoc allOperandLoc = parser.getCurrentLocation();
|
|
if (parser.parseOperandList(allOperands) ||
|
|
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
|
|
parser.parseCustomTypeWithFallback(resultTypes[0]))
|
|
return failure();
|
|
|
|
result.addTypes(resultTypes);
|
|
|
|
SmallVector<Type> operandTypes;
|
|
operandTypes.push_back(getPointerTypeSameShape(resultTypes[0])); // ptr
|
|
int hasMask = 0, hasOther = 0;
|
|
if (allOperands.size() >= 2) {
|
|
operandTypes.push_back(getI1SameShape(resultTypes[0])); // mask
|
|
hasMask = 1;
|
|
}
|
|
if (allOperands.size() >= 3) {
|
|
operandTypes.push_back(resultTypes[0]); // other
|
|
hasOther = 1;
|
|
}
|
|
|
|
if (parser.resolveOperands(allOperands, operandTypes, allOperandLoc,
|
|
result.operands))
|
|
return failure();
|
|
// Deduce operand_segment_sizes from the number of the operands.
|
|
auto operand_segment_sizesAttrName =
|
|
LoadOp::operand_segment_sizesAttrName(result.name);
|
|
result.addAttribute(
|
|
operand_segment_sizesAttrName,
|
|
parser.getBuilder().getI32VectorAttr({1, hasMask, hasOther}));
|
|
return success();
|
|
}
|
|
|
|
void printLoadOp(OpAsmPrinter &printer, LoadOp loadOp) {
|
|
printer << " ";
|
|
printer << loadOp.getOperation()->getOperands();
|
|
// "operand_segment_sizes" can be deduced, so we don't print it.
|
|
printer.printOptionalAttrDict(loadOp->getAttrs(),
|
|
{loadOp.operand_segment_sizesAttrName()});
|
|
printer << " : ";
|
|
printer.printStrippedAttrOrType(loadOp.result().getType());
|
|
}
|
|
|
|
ParseResult parseStoreOp(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::OperandType, 4> allOperands;
|
|
Type valueType;
|
|
SMLoc allOperandLoc = parser.getCurrentLocation();
|
|
if (parser.parseOperandList(allOperands) ||
|
|
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
|
|
parser.parseCustomTypeWithFallback(valueType))
|
|
return failure();
|
|
|
|
SmallVector<Type> operandTypes;
|
|
operandTypes.push_back(getPointerTypeSameShape(valueType)); // ptr
|
|
operandTypes.push_back(valueType); // value
|
|
if (allOperands.size() >= 3)
|
|
operandTypes.push_back(getI1SameShape(valueType)); // mask
|
|
|
|
if (parser.resolveOperands(allOperands, operandTypes, allOperandLoc,
|
|
result.operands))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
void printStoreOp(OpAsmPrinter &printer, StoreOp storeOp) {
|
|
printer << " ";
|
|
printer << storeOp.getOperation()->getOperands();
|
|
printer.printOptionalAttrDict(storeOp->getAttrs(), /*elidedAttrs=*/{});
|
|
printer << " : ";
|
|
printer.printStrippedAttrOrType(storeOp.value().getType());
|
|
}
|
|
|
|
} // namespace triton
|
|
} // namespace mlir
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "triton/Dialect/Triton/IR/Ops.cpp.inc"
|
|
|
|
// enum attribute definitions
|
|
#include "triton/Dialect/Triton/IR/OpsEnums.cpp.inc"
|
|
|
|
namespace mlir {
|
|
namespace triton {
|
|
|
|
//-- FpToFpOp --
|
|
bool FpToFpOp::areCastCompatible(::mlir::TypeRange inputs,
|
|
::mlir::TypeRange outputs) {
|
|
if (inputs.size() != 1 || outputs.size() != 1)
|
|
return false;
|
|
auto srcEltType = inputs.front();
|
|
auto dstEltType = outputs.front();
|
|
auto srcTensorType = srcEltType.dyn_cast<mlir::RankedTensorType>();
|
|
auto dstTensorType = dstEltType.dyn_cast<mlir::RankedTensorType>();
|
|
if (srcTensorType && dstTensorType) {
|
|
srcEltType = srcTensorType.getElementType();
|
|
dstEltType = dstTensorType.getElementType();
|
|
}
|
|
// Check whether fp8 <=> fp16, bf16, f32, f64
|
|
// Make `srcEltType` always the fp8 side
|
|
if (dstEltType.dyn_cast<mlir::triton::Float8Type>())
|
|
std::swap(srcEltType, dstEltType);
|
|
if (!srcEltType.dyn_cast<mlir::triton::Float8Type>())
|
|
return false;
|
|
return dstEltType.isF16() || dstEltType.isBF16() || dstEltType.isF32() ||
|
|
dstEltType.isF64();
|
|
}
|
|
|
|
//-- StoreOp --
|
|
void StoreOp::build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
|
|
::mlir::Value ptr, ::mlir::Value value) {
|
|
StoreOp::build(builder, state, ptr, value, mlir::Value());
|
|
}
|
|
|
|
//-- LoadOp --
|
|
static Type getLoadOpResultType(::mlir::OpBuilder &builder, Type ptrType) {
|
|
auto ptrTensorType = ptrType.dyn_cast<RankedTensorType>();
|
|
if (!ptrTensorType)
|
|
return ptrType.cast<PointerType>().getPointeeType();
|
|
auto shape = ptrTensorType.getShape();
|
|
Type elementType =
|
|
ptrTensorType.getElementType().cast<PointerType>().getPointeeType();
|
|
return RankedTensorType::get(shape, elementType);
|
|
}
|
|
|
|
void LoadOp::build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
|
|
::mlir::Value ptr, ::mlir::triton::CacheModifier cache,
|
|
::mlir::triton::EvictionPolicy evict, bool isVolatile) {
|
|
LoadOp::build(builder, state, ptr, mlir::Value(), mlir::Value(), cache, evict,
|
|
isVolatile);
|
|
}
|
|
|
|
void LoadOp::build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
|
|
::mlir::Value ptr, ::mlir::Value mask,
|
|
::mlir::triton::CacheModifier cache,
|
|
::mlir::triton::EvictionPolicy evict, bool isVolatile) {
|
|
LoadOp::build(builder, state, ptr, mask, mlir::Value(), cache, evict,
|
|
isVolatile);
|
|
}
|
|
|
|
void LoadOp::build(::mlir::OpBuilder &builder, ::mlir::OperationState &state,
|
|
::mlir::Value ptr, ::mlir::Value mask, ::mlir::Value other,
|
|
::mlir::triton::CacheModifier cache,
|
|
::mlir::triton::EvictionPolicy evict, bool isVolatile) {
|
|
Type resultType = getLoadOpResultType(builder, ptr.getType());
|
|
|
|
state.addOperands(ptr);
|
|
if (mask) {
|
|
state.addOperands(mask);
|
|
if (other) {
|
|
state.addOperands(other);
|
|
}
|
|
}
|
|
state.addAttribute(
|
|
operand_segment_sizesAttrName(state.name),
|
|
builder.getI32VectorAttr({1, (mask ? 1 : 0), (other ? 1 : 0)}));
|
|
state.addAttribute(
|
|
cacheAttrName(state.name),
|
|
::mlir::triton::CacheModifierAttr::get(builder.getContext(), cache));
|
|
state.addAttribute(
|
|
evictAttrName(state.name),
|
|
::mlir::triton::EvictionPolicyAttr::get(builder.getContext(), evict));
|
|
state.addAttribute(isVolatileAttrName(state.name),
|
|
builder.getBoolAttr(isVolatile));
|
|
state.addTypes({resultType});
|
|
}
|
|
|
|
//-- DotOp --
|
|
mlir::LogicalResult mlir::triton::DotOp::inferReturnTypes(
|
|
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
|
DictionaryAttr attributes, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
// type is the same as the accumulator
|
|
auto accTy = operands[2].getType().cast<RankedTensorType>();
|
|
inferredReturnTypes.push_back(accTy);
|
|
|
|
// verify encodings
|
|
auto aEnc = operands[0].getType().cast<RankedTensorType>().getEncoding();
|
|
auto bEnc = operands[1].getType().cast<RankedTensorType>().getEncoding();
|
|
auto retEnc = accTy.getEncoding();
|
|
if (aEnc) {
|
|
assert(bEnc);
|
|
Dialect &dialect = aEnc.getDialect();
|
|
auto interface = dyn_cast<DialectInferLayoutInterface>(&dialect);
|
|
if (interface->inferDotOpEncoding(aEnc, 0, retEnc, location).failed())
|
|
return mlir::failure();
|
|
if (interface->inferDotOpEncoding(bEnc, 1, retEnc, location).failed())
|
|
return mlir::failure();
|
|
}
|
|
return mlir::success();
|
|
}
|
|
|
|
//-- ReduceOp --
|
|
mlir::LogicalResult mlir::triton::ReduceOp::inferReturnTypes(
|
|
MLIRContext *context, Optional<Location> location, ValueRange operands,
|
|
DictionaryAttr attributes, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
// infer shape
|
|
Value arg = operands[0];
|
|
auto argTy = arg.getType().cast<RankedTensorType>();
|
|
auto argEltTy = argTy.getElementType();
|
|
auto i32Ty = IntegerType::get(argEltTy.getContext(), 32);
|
|
auto redOp =
|
|
attributes.get("redOp").cast<mlir::triton::RedOpAttr>().getValue();
|
|
bool withIndex = mlir::triton::ReduceOp::withIndex(redOp);
|
|
auto retEltTy = withIndex ? i32Ty : argEltTy;
|
|
auto retShape = argTy.getShape().vec();
|
|
int axis = attributes.get("axis").cast<IntegerAttr>().getInt();
|
|
retShape.erase(retShape.begin() + axis);
|
|
if (retShape.empty()) {
|
|
// 0d-tensor -> scalar
|
|
inferredReturnTypes.push_back(retEltTy);
|
|
} else {
|
|
// nd-tensor where n >= 1
|
|
// infer encoding
|
|
Attribute argEncoding = argTy.getEncoding();
|
|
Attribute retEncoding;
|
|
if (argEncoding) {
|
|
Dialect &dialect = argEncoding.getDialect();
|
|
auto inferLayoutInterface =
|
|
dyn_cast<DialectInferLayoutInterface>(&dialect);
|
|
if (inferLayoutInterface
|
|
->inferReduceOpEncoding(argEncoding, axis, retEncoding)
|
|
.failed()) {
|
|
llvm::report_fatal_error("failed to infer layout for ReduceOp");
|
|
return mlir::failure();
|
|
}
|
|
}
|
|
// create type
|
|
inferredReturnTypes.push_back(
|
|
RankedTensorType::get(retShape, retEltTy, retEncoding));
|
|
}
|
|
return mlir::success();
|
|
}
|
|
|
|
bool mlir::triton::ReduceOp::withIndex(mlir::triton::RedOp redOp) {
|
|
return redOp == mlir::triton::RedOp::ARGMIN ||
|
|
redOp == mlir::triton::RedOp::ARGMAX ||
|
|
redOp == mlir::triton::RedOp::ARGUMIN ||
|
|
redOp == mlir::triton::RedOp::ARGUMAX ||
|
|
redOp == mlir::triton::RedOp::ARGFMIN ||
|
|
redOp == mlir::triton::RedOp::ARGFMAX;
|
|
}
|
|
|
|
//-- SplatOp --
|
|
OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
|
|
auto constOperand = src().getDefiningOp<arith::ConstantOp>();
|
|
if (!constOperand)
|
|
return {};
|
|
auto shapedType = getType().cast<ShapedType>();
|
|
auto ret = SplatElementsAttr::get(shapedType, {constOperand.getValue()});
|
|
return ret;
|
|
}
|
|
|
|
//-- ExpandDimsOp --
|
|
mlir::LogicalResult mlir::triton::ExpandDimsOp::inferReturnTypes(
|
|
MLIRContext *context, Optional<Location> loc, ValueRange operands,
|
|
DictionaryAttr attributes, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
// infer shape
|
|
auto arg = operands[0];
|
|
auto argTy = arg.getType().cast<RankedTensorType>();
|
|
auto retShape = argTy.getShape().vec();
|
|
int axis = attributes.get("axis").cast<IntegerAttr>().getInt();
|
|
retShape.insert(retShape.begin() + axis, 1);
|
|
// infer encoding
|
|
Attribute argEncoding = argTy.getEncoding();
|
|
Attribute retEncoding;
|
|
if (argEncoding) {
|
|
Dialect &dialect = argEncoding.getDialect();
|
|
auto inferLayoutInterface = dyn_cast<DialectInferLayoutInterface>(&dialect);
|
|
if (inferLayoutInterface
|
|
->inferExpandDimsOpEncoding(argEncoding, axis, retEncoding, loc)
|
|
.failed())
|
|
return emitOptionalError(loc, "failed to infer layout for ExpandDimsOp");
|
|
}
|
|
// create type
|
|
auto argEltTy = argTy.getElementType();
|
|
inferredReturnTypes.push_back(
|
|
RankedTensorType::get(retShape, argEltTy, retEncoding));
|
|
return mlir::success();
|
|
}
|
|
|
|
//-- BroadcastOp --
|
|
OpFoldResult BroadcastOp::fold(ArrayRef<Attribute> operands) {
|
|
auto constOperand = src().getDefiningOp<arith::ConstantOp>();
|
|
if (!constOperand)
|
|
return {};
|
|
|
|
auto shapedType = getType().cast<ShapedType>();
|
|
auto value = constOperand.getValue();
|
|
if (auto denseElemsAttr = value.dyn_cast<DenseElementsAttr>()) {
|
|
if (!denseElemsAttr.isSplat())
|
|
return {};
|
|
return SplatElementsAttr::get(shapedType,
|
|
denseElemsAttr.getSplatValue<Attribute>());
|
|
} else if (value.getType().isIntOrIndexOrFloat()) {
|
|
return SplatElementsAttr::get(shapedType, value);
|
|
} else {
|
|
return {};
|
|
}
|
|
}
|
|
|
|
} // namespace triton
|
|
} // namespace mlir
|