Files
triton/python/tests/test_random.py

199 lines
6.0 KiB
Python

import numpy as np
import pytest
import scipy.stats
import torch
import triton
import triton.language as tl
#####################################
# Reference Philox Implementation
#####################################
class PhiloxConfig:
def __init__(self, PHILOX_ROUND_A, PHILOX_ROUND_B, PHILOX_KEY_A, PHILOX_KEY_B, DTYPE):
self.PHILOX_ROUND_A = np.array(PHILOX_ROUND_A, dtype=DTYPE)
self.PHILOX_ROUND_B = np.array(PHILOX_ROUND_B, dtype=DTYPE)
self.PHILOX_KEY_A = np.array(PHILOX_KEY_A, dtype=DTYPE)
self.PHILOX_KEY_B = np.array(PHILOX_KEY_B, dtype=DTYPE)
self.DTYPE = DTYPE
# This is better for GPU
PHILOX_32 = PhiloxConfig(
PHILOX_KEY_A=0x9E3779B9,
PHILOX_KEY_B=0xBB67AE85,
PHILOX_ROUND_A=0xD2511F53,
PHILOX_ROUND_B=0xCD9E8D57,
DTYPE=np.uint32,
)
# This is what numpy implements
PHILOX_64 = PhiloxConfig(
PHILOX_KEY_A=0x9E3779B97F4A7C15,
PHILOX_KEY_B=0xBB67AE8584CAA73B,
PHILOX_ROUND_A=0xD2E7470EE14C6C93,
PHILOX_ROUND_B=0xCA5A826395121157,
DTYPE=np.uint64,
)
class CustomPhilox4x:
def __init__(self, seed, config):
self._config = config
seed = self._into_pieces(seed)
self._key = np.array(seed[:2], dtype=self._dtype)
self._counter = np.array((0, 0) + seed[2:], dtype=self._dtype)
@property
def _dtype(self):
return self._config.DTYPE
def _into_pieces(self, n, pad=4):
res = []
while len(res) < pad:
res.append(np.array(n, dtype=self._dtype))
n >>= (np.dtype(self._dtype).itemsize * 8)
assert n == 0
return tuple(res)
def _multiply_low_high(self, a, b):
low = a * b
high = int(a) * int(b)
high = np.array(high >> (np.dtype(self._dtype).itemsize * 8), dtype=self._dtype)
return low, high
def _single_round(self, counter, key):
lo0, hi0 = self._multiply_low_high(self._config.PHILOX_ROUND_A, counter[0])
lo1, hi1 = self._multiply_low_high(self._config.PHILOX_ROUND_B, counter[2])
ret0 = hi1 ^ counter[1] ^ key[0]
ret1 = lo1
ret2 = hi0 ^ counter[3] ^ key[1]
ret3 = lo0
return np.array([ret0, ret1, ret2, ret3], dtype=self._dtype)
def _raise_key(self, key):
pk = [self._config.PHILOX_KEY_A, self._config.PHILOX_KEY_B]
return key + np.array(pk, dtype=self._dtype)
def random_raw(self):
counter = self._counter
key = self._key
for _ in range(10):
counter = self._single_round(counter, key)
key = self._raise_key(key)
self.advance(1)
return counter
def advance(self, n_steps):
self._counter[0] += n_steps
assert self._counter[0] < 2**32, "FIXME: doesn't work for large offsets"
class CustomPhilox(CustomPhilox4x):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.buffer = []
def random_raw(self):
if len(self.buffer) == 0:
self.buffer = list(super().random_raw())[::-1]
return int(self.buffer.pop())
#####################################
# Unit Tests
#####################################
BLOCK = 1024
# test generation of random uint32
@pytest.mark.parametrize('size, seed',
[(size, seed) for size in ['10', '4,53', '10000']
for seed in [0, 42, 124, 54, 0xffffffff, 0xdeadbeefcafeb0ba]]
)
def test_randint(size, seed, device='cuda'):
size = list(map(int, size.split(',')))
@triton.jit
def kernel(X, N, seed):
offset = tl.program_id(0) * BLOCK + tl.arange(0, BLOCK)
rand = tl.randint(seed, offset)
tl.store(X + offset, rand, mask=offset < N)
# triton result
x = torch.empty(size, dtype=torch.int32, device=device)
N = x.numel()
grid = (triton.cdiv(N, BLOCK),)
kernel[grid](x, N, seed)
out_tri = x.cpu().numpy().astype(np.uint32).flatten().tolist()
# reference result
gen = CustomPhilox4x(seed, config=PHILOX_32)
out_ref = [gen.random_raw()[0] for _ in out_tri]
assert out_tri == out_ref
# test uniform PRNG
@pytest.mark.parametrize('size, seed',
[(size, seed) for size in [1000000]
for seed in [0, 42, 124, 54]]
)
def test_rand(size, seed, device='cuda'):
@triton.jit
def kernel(X, N, seed):
offset = tl.program_id(0) * BLOCK + tl.arange(0, BLOCK)
rand = tl.rand(seed, offset)
tl.store(X + offset, rand, mask=offset < N)
# triton result
x = torch.empty(size, dtype=torch.float32, device=device)
N = x.numel()
grid = (triton.cdiv(N, BLOCK),)
kernel[grid](x, N, seed)
assert all((x >= 0) & (x <= 1))
assert scipy.stats.kstest(x.tolist(), 'uniform', args=(0, 1)).statistic < 0.01
# test normal PRNG
@pytest.mark.parametrize('size, seed',
[(size, seed) for size in [1000000]
for seed in [0, 42, 124, 54]]
)
def test_randn(size, seed, device='cuda'):
@triton.jit
def kernel(X, N, seed):
offset = tl.program_id(0) * BLOCK + tl.arange(0, BLOCK)
rand = tl.randn(seed, offset)
tl.store(X + offset, rand, mask=offset < N)
# triton result
x = torch.empty(size, dtype=torch.float32, device=device)
N = x.numel()
grid = (triton.cdiv(N, BLOCK),)
kernel[grid](x, N, seed)
assert abs(x.mean()) < 1e-2
assert abs(x.std() - 1) < 1e-2
# tl.rand() should never produce >=1.0
def test_rand_limits():
@triton.jit
def kernel(input, output, n: tl.constexpr):
idx = tl.arange(0, n)
x = tl.load(input + idx)
y = tl.random.uint32_to_uniform_float(x)
tl.store(output + idx, y)
min_max_int32 = torch.tensor([
torch.iinfo(torch.int32).min,
torch.iinfo(torch.int32).max,
], dtype=torch.int32, device='cuda')
output = torch.empty(2, dtype=torch.float32, device='cuda')
kernel[(1,)](min_max_int32, output, 2)
assert output[0] == output[1]
assert 1.0 - torch.finfo(torch.float32).eps <= output[0].item() < 1.0