215 lines
11 KiB
MLIR
215 lines
11 KiB
MLIR
// RUN: triton-opt %s --mlir-disable-threading -test-print-alias -split-input-file 2>&1 | FileCheck %s
|
|
|
|
#AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
|
|
#BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}>
|
|
#A_SHARED = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
|
|
#B_SHARED = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
|
|
#C = #triton_gpu.mma<{versionMajor = 2, warpsPerCTA = [4, 1]}>
|
|
#A_DOT = #triton_gpu.dot_op<{opIdx = 0, parent = #C}>
|
|
#B_DOT = #triton_gpu.dot_op<{opIdx = 1, parent = #C}>
|
|
|
|
// CHECK-LABEL: matmul_loop
|
|
// There shouldn't be any aliasing with the dot op encoding.
|
|
func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
|
|
%a_ptr_init = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
|
|
%b_ptr_init = tt.broadcast %B : (!tt.ptr<f16>) -> tensor<32x128x!tt.ptr<f16>, #BL>
|
|
%a_mask = arith.constant dense<true> : tensor<128x32xi1, #AL>
|
|
%a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL>
|
|
%b_mask = arith.constant dense<true> : tensor<32x128xi1, #BL>
|
|
%b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL>
|
|
%c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C>
|
|
%a_off = arith.constant dense<4> : tensor<128x32xi32, #AL>
|
|
%b_off = arith.constant dense<4> : tensor<32x128xi32, #BL>
|
|
scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>) {
|
|
%a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
|
|
%a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A_DOT>
|
|
%b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL>
|
|
%b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B_DOT>
|
|
%c = tt.dot %a, %b, %prev_c {transA = false, transB = false, allowTF32 = true} : tensor<128x32xf16, #A_DOT> * tensor<32x128xf16, #B_DOT> -> tensor<128x128xf32, #C>
|
|
|
|
%next_a_ptr = tt.addptr %a_ptr, %a_off : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<128x32xi32, #AL>
|
|
%next_b_ptr = tt.addptr %b_ptr, %b_off : tensor<32x128x!tt.ptr<f16>, #BL>, tensor<32x128xi32, #BL>
|
|
scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>
|
|
}
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: alloc
|
|
func @alloc(%A : !tt.ptr<f16>) {
|
|
// CHECK: %cst -> %cst
|
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
|
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x32xf16, #AL>
|
|
// CHECK: %0 -> %0
|
|
%cst2 = triton_gpu.alloc_tensor : tensor<16x16xf16, #A_SHARED>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: convert
|
|
func @convert(%A : !tt.ptr<f16>) {
|
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL>
|
|
// CHECK: %0 -> %0
|
|
%cst1 = triton_gpu.convert_layout %cst0 : (tensor<16x16xf16, #AL>) -> tensor<16x16xf16, #A_SHARED>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: trans
|
|
func @trans(%A : !tt.ptr<f16>) {
|
|
// CHECK: %cst -> %cst
|
|
%tensor = arith.constant dense<0.000000e+00> : tensor<16x32xf16, #A_SHARED>
|
|
// CHECK: %0 -> %cst
|
|
%b = tt.trans %tensor : (tensor<16x32xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: insert_slice_async
|
|
func @insert_slice_async(%A : !tt.ptr<f16>, %i1 : i1) {
|
|
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<16x16x!tt.ptr<f16>, #AL>
|
|
%mask = tt.splat %i1 : (i1) -> tensor<16x16xi1, #AL>
|
|
%other = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL>
|
|
// CHECK: %cst_0 -> %cst_0
|
|
%tensor = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A_SHARED>
|
|
%index = arith.constant 0 : i32
|
|
// CHECK: %2 -> %cst_0
|
|
%a = triton_gpu.insert_slice_async %a_ptr, %tensor, %index, %mask, %other {axis = 0 : i32, cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<16x16x!tt.ptr<f16>, #AL> -> tensor<1x16x16xf16, #A_SHARED>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: insert_slice
|
|
func @insert_slice(%A : !tt.ptr<f16>, %i1 : i1) {
|
|
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<16x16x!tt.ptr<f16>, #AL>
|
|
%mask = tt.splat %i1 : (i1) -> tensor<16x16xi1, #AL>
|
|
%other = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL>
|
|
// CHECK: %cst_0 -> %cst_0
|
|
%tensor = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A_SHARED>
|
|
%index = arith.constant 0 : index
|
|
%a = tt.load %a_ptr, %mask, %other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<16x16xf16, #AL>
|
|
// CHECK: %3 -> %cst_0
|
|
%b = tensor.insert_slice %a into %tensor[%index, 0, 0][1, 16, 16][1, 1, 1]: tensor<16x16xf16, #AL> into tensor<1x16x16xf16, #A_SHARED>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: extract_slice
|
|
func @extract_slice(%A : !tt.ptr<f16>) {
|
|
// CHECK: %cst -> %cst
|
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A_SHARED>
|
|
%index = arith.constant 0 : index
|
|
// CHECK-NEXT: %0 -> %cst
|
|
%cst1 = tensor.extract_slice %cst0[%index, 0, 0][1, 16, 16][1, 1, 1] : tensor<1x16x16xf16, #A_SHARED> to tensor<16x16xf16, #A_SHARED>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: if_cat
|
|
func @if_cat(%i1 : i1) {
|
|
// CHECK: %cst -> %cst
|
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
|
|
// CHECK: %cst_0 -> %cst_0
|
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
|
|
// CHECK: %0 -> %1,%1
|
|
%cst2 = scf.if %i1 -> tensor<32x16xf16, #A_SHARED> {
|
|
// CHECK: %1 -> %1
|
|
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
|
|
scf.yield %a : tensor<32x16xf16, #A_SHARED>
|
|
} else {
|
|
// CHECK: %1 -> %1
|
|
%b = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A_SHARED>, tensor<16x16xf16, #A_SHARED>) -> tensor<32x16xf16, #A_SHARED>
|
|
scf.yield %b : tensor<32x16xf16, #A_SHARED>
|
|
}
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: if_alias
|
|
func @if_alias(%i1 : i1) {
|
|
// CHECK: %cst -> %cst
|
|
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
|
|
// CHECK-NEXT: %cst_0 -> %cst_0
|
|
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A_SHARED>
|
|
// CHECK-NEXT: %0 -> %cst,%cst_0
|
|
%cst2 = scf.if %i1 -> tensor<16x16xf16, #A_SHARED> {
|
|
scf.yield %cst0 : tensor<16x16xf16, #A_SHARED>
|
|
} else {
|
|
scf.yield %cst1 : tensor<16x16xf16, #A_SHARED>
|
|
}
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: for
|
|
func @for(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
|
|
// CHECK: %cst -> %cst
|
|
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %cst_0 -> %cst_0
|
|
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %cst_1 -> %cst_1
|
|
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %arg6 -> %cst
|
|
// CHECK-NEXT: %arg7 -> %cst_0
|
|
// CHECK-NEXT: %arg8 -> %cst_1
|
|
// CHECK-NEXT: %0#0 -> %cst,%cst_0
|
|
// CHECK-NEXT: %0#1 -> %cst,%cst_0
|
|
// CHECK-NEXT: %0#2 -> %cst,%cst_0
|
|
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) {
|
|
scf.yield %b_shared, %a_shared, %a_shared : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>
|
|
}
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: for_if
|
|
func @for_if(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>, %i1 : i1) {
|
|
// CHECK: %cst -> %cst
|
|
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %cst_0 -> %cst_0
|
|
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %cst_1 -> %cst_1
|
|
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %arg7 -> %cst
|
|
// CHECK-NEXT: %arg8 -> %cst_0
|
|
// CHECK-NEXT: %arg9 -> %cst_1
|
|
// CHECK-NEXT: %0#0 -> %cst,%cst_0
|
|
// CHECK-NEXT: %0#1 -> %cst,%cst_0
|
|
// CHECK-NEXT: %0#2 -> %cst,%cst_0
|
|
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) {
|
|
scf.if %i1 {
|
|
%index = arith.constant 8 : index
|
|
// CHECK-NEXT: %1 -> %cst,%cst_0
|
|
%cst0 = tensor.extract_slice %a_shared[%index, 0][1, 32][1, 1] : tensor<128x32xf16, #A_SHARED> to tensor<32xf16, #A_SHARED>
|
|
scf.yield
|
|
}
|
|
scf.yield %b_shared, %a_shared, %a_shared : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>
|
|
}
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: for_if_for
|
|
func @for_if_for(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>, %i1 : i1) {
|
|
// CHECK: %cst -> %cst
|
|
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %cst_0 -> %cst_0
|
|
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %cst_1 -> %cst_1
|
|
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
// CHECK-NEXT: %arg7 -> %cst
|
|
// CHECK-NEXT: %arg8 -> %cst_0
|
|
// CHECK-NEXT: %arg9 -> %cst_1
|
|
// CHECK-NEXT: %0#0 -> %cst
|
|
// CHECK-NEXT: %0#1 -> %cst_0
|
|
// CHECK-NEXT: %0#2 -> %cst_2,%cst_2
|
|
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>) {
|
|
// CHECK-NEXT: %arg11 -> %cst_1,%cst_2,%cst_2
|
|
// CHECK-NEXT: %1 -> %cst_2,%cst_2
|
|
%c_shared_next = scf.for %jv = %lb to %ub step %step iter_args(%c_shared_next = %c_shared) -> (tensor<128x32xf16, #A_SHARED>) {
|
|
// CHECK-NEXT: %2 -> %cst_2,%cst_2
|
|
%c_shared_next_next = scf.if %i1 -> tensor<128x32xf16, #A_SHARED> {
|
|
// CHECK-NEXT: %cst_2 -> %cst_2
|
|
%cst0 = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
scf.yield %cst0 : tensor<128x32xf16, #A_SHARED>
|
|
} else {
|
|
// CHECK-NEXT: %cst_2 -> %cst_2
|
|
%cst0 = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A_SHARED>
|
|
scf.yield %cst0 : tensor<128x32xf16, #A_SHARED>
|
|
}
|
|
scf.yield %c_shared_next_next : tensor<128x32xf16, #A_SHARED>
|
|
}
|
|
scf.yield %a_shared, %b_shared, %c_shared_next : tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>, tensor<128x32xf16, #A_SHARED>
|
|
}
|
|
return
|
|
}
|