Files
triton/lib/kernels/templates/tools/arguments.hpp
2015-10-06 16:34:47 -04:00

131 lines
5.1 KiB
C++

#include <string>
#include <vector>
#include <memory>
#include <algorithm>
#include "isaac/kernels/mapped_object.h"
#include "isaac/kernels/parse.h"
#include "isaac/array.h"
namespace isaac
{
namespace templates
{
//Generate
inline std::string generate_arguments(std::string const &, driver::Device const & device, mapping_type const & mappings, math_expression const & expressions)
{
std::string kwglobal = Global(device.backend()).get();
std::string _size_t = size_type(device);
kernel_generation_stream stream;
process(stream, PARENT_NODE_TYPE, { {"array0", kwglobal + " #scalartype* #pointer, " + _size_t + " #start,"},
{"host_scalar", "#scalartype #name,"},
{"array1", kwglobal + " #scalartype* #pointer, " + _size_t + " #start, " + _size_t + " #stride,"},
{"array2", kwglobal + " #scalartype* #pointer, " + _size_t + " #ld, " + _size_t + " #start, " + _size_t + " #stride, "},
{"tuple4", "#scalartype #name0, #scalartype #name1, #scalartype #name2, #scalartype #name3,"}}
, expressions, mappings);
std::string res = stream.str();
res.erase(res.rfind(','));
return res;
}
//Enqueue
class set_arguments_functor : public traversal_functor
{
public:
typedef void result_type;
set_arguments_functor(symbolic_binder & binder, unsigned int & current_arg, driver::Kernel & kernel)
: binder_(binder), current_arg_(current_arg), kernel_(kernel)
{
}
void set_arguments(numeric_type dtype, values_holder const & scal) const
{
switch(dtype)
{
// case BOOL_TYPE: kernel_.setArg(current_arg_++, scal.bool8); break;
case CHAR_TYPE: kernel_.setArg(current_arg_++, scal.int8); break;
case UCHAR_TYPE: kernel_.setArg(current_arg_++, scal.uint8); break;
case SHORT_TYPE: kernel_.setArg(current_arg_++, scal.int16); break;
case USHORT_TYPE: kernel_.setArg(current_arg_++, scal.uint16); break;
case INT_TYPE: kernel_.setArg(current_arg_++, scal.int32); break;
case UINT_TYPE: kernel_.setArg(current_arg_++, scal.uint32); break;
case LONG_TYPE: kernel_.setArg(current_arg_++, scal.int64); break;
case ULONG_TYPE: kernel_.setArg(current_arg_++, scal.uint64); break;
// case HALF_TYPE: kernel_.setArg(current_arg_++, scal.float16); break;
case FLOAT_TYPE: kernel_.setArg(current_arg_++, scal.float32); break;
case DOUBLE_TYPE: kernel_.setArg(current_arg_++, scal.float64); break;
default: throw unknown_datatype(dtype);
}
}
void set_arguments(array const * a, bool is_assigned) const
{
bool is_bound = binder_.bind(a->data(), is_assigned);
if (is_bound)
{
kernel_.setArg(current_arg_++, a->data());
//scalar
if(a->shape()[0]==1 && a->shape()[1]==1)
{
kernel_.setSizeArg(current_arg_++, a->start()[0]);
}
//array
else if(a->shape()[0]>1 && a->shape()[1]==1)
{
kernel_.setSizeArg(current_arg_++, a->start()[0] + a->start()[1]*a->ld());
kernel_.setSizeArg(current_arg_++, std::max(a->stride()[0], a->stride()[1]));
}
else
{
kernel_.setSizeArg(current_arg_++, a->ld()*a->stride()[1]);
kernel_.setSizeArg(current_arg_++, a->start()[0] + a->start()[1]*a->ld());
kernel_.setSizeArg(current_arg_++, a->stride()[0]);
}
}
}
void set_arguments(lhs_rhs_element const & lhs_rhs, bool is_assigned) const
{
switch(lhs_rhs.type_family)
{
case VALUE_TYPE_FAMILY: return set_arguments(lhs_rhs.dtype, lhs_rhs.vscalar);
case ARRAY_TYPE_FAMILY: return set_arguments(lhs_rhs.array, is_assigned);
case PLACEHOLDER_TYPE_FAMILY: return;
default: throw std::runtime_error("Unrecognized type family");
}
}
void operator()(isaac::math_expression const & math_expression, size_t root_idx, leaf_t leaf_t) const
{
math_expression::node const & root_node = math_expression.tree()[root_idx];
if (leaf_t==LHS_NODE_TYPE && root_node.lhs.type_family != COMPOSITE_OPERATOR_FAMILY)
set_arguments(root_node.lhs, detail::is_assignment(root_node.op));
else if (leaf_t==RHS_NODE_TYPE && root_node.rhs.type_family != COMPOSITE_OPERATOR_FAMILY)
set_arguments(root_node.rhs, false);
}
private:
symbolic_binder & binder_;
unsigned int & current_arg_;
driver::Kernel & kernel_;
};
inline void set_arguments(math_expression const & expression, driver::Kernel & kernel, unsigned int & current_arg, binding_policy_t binding_policy)
{
std::unique_ptr<symbolic_binder> binder;
if (binding_policy==BIND_SEQUENTIAL)
binder.reset(new bind_sequential());
else
binder.reset(new bind_independent());
traverse(expression, expression.root(), set_arguments_functor(*binder, current_arg, kernel), true);
}
}
}