108 lines
2.9 KiB
C++
108 lines
2.9 KiB
C++
#include <algorithm>
|
|
#include <climits>
|
|
#include "triton/codegen/analysis/layout.h"
|
|
#include "triton/codegen/analysis/allocation.h"
|
|
#include "triton/codegen/analysis/liveness.h"
|
|
#include "triton/ir/utils.h"
|
|
|
|
namespace triton{
|
|
namespace codegen{
|
|
namespace analysis{
|
|
|
|
|
|
void allocation::run(ir::module &mod) {
|
|
using std::max;
|
|
using std::min;
|
|
typedef std::multimap<unsigned, segment> triples_map_type;
|
|
|
|
std::vector<shared_layout*> I;
|
|
for(auto x: liveness_->get())
|
|
I.push_back(x.first);
|
|
std::vector<shared_layout*> J = I;
|
|
|
|
triples_map_type H;
|
|
H.insert({0, segment{0, INT_MAX}});
|
|
|
|
std::vector<shared_layout*> V;
|
|
std::map<shared_layout*, unsigned> starts;
|
|
while(!J.empty()){
|
|
auto h_it = H.begin();
|
|
unsigned w = h_it->first;
|
|
segment xh = h_it->second;
|
|
H.erase(h_it);
|
|
auto j_it = std::find_if(J.begin(), J.end(), [&](shared_layout* JJ){
|
|
segment xj = liveness_->get(JJ);
|
|
bool res = xj.intersect(xh);
|
|
for(auto val: H)
|
|
res = res && !val.second.intersect(xj);
|
|
return res;
|
|
});
|
|
if(j_it != J.end()){
|
|
unsigned size = (*j_it)->get_size();
|
|
segment xj = liveness_->get(*j_it);
|
|
starts[*j_it] = w;
|
|
H.insert({w + size, segment{max(xh.start, xj.start), min(xh.end, xj.end)}});
|
|
if(xh.start < xj.start)
|
|
H.insert({w, segment{xh.start, xj.end}});
|
|
if(xj.end < xh.end)
|
|
H.insert({w, segment{xj.start, xh.end}});
|
|
V.push_back(*j_it);
|
|
J.erase(j_it);
|
|
}
|
|
}
|
|
|
|
// Build interference graph
|
|
std::map<shared_layout*, std::set<shared_layout*>> interferences;
|
|
for(shared_layout* x: V)
|
|
for(shared_layout* y: V){
|
|
if(x == y)
|
|
continue;
|
|
unsigned X0 = starts[x], Y0 = starts[y];
|
|
unsigned NX = x->get_size();
|
|
unsigned NY = y->get_size();
|
|
segment XS = {X0, X0 + NX};
|
|
segment YS = {Y0, Y0 + NY};
|
|
if(liveness_->get(x).intersect(liveness_->get(y))
|
|
&& XS.intersect(YS))
|
|
interferences[x].insert(y);
|
|
}
|
|
|
|
// Initialize colors
|
|
std::map<shared_layout*, int> colors;
|
|
for(shared_layout* X: V)
|
|
colors[X] = (X==V[0])?0:-1;
|
|
|
|
|
|
// First-fit graph coloring
|
|
std::vector<bool> available(V.size());
|
|
for(shared_layout* x: V){
|
|
// Non-neighboring colors are available
|
|
std::fill(available.begin(), available.end(), true);
|
|
for(shared_layout* Y: interferences[x]){
|
|
int color = colors[Y];
|
|
if(color >= 0)
|
|
available[color] = false;
|
|
}
|
|
// Assigns first available color
|
|
auto It = std::find(available.begin(), available.end(), true);
|
|
colors[x] = std::distance(available.begin(), It);
|
|
}
|
|
|
|
// Finalize allocation
|
|
for(shared_layout* x: V){
|
|
unsigned Adj = 0;
|
|
for(shared_layout* y: interferences[x])
|
|
Adj = std::max<unsigned>(Adj, starts[y] + y->get_size());
|
|
offsets_[x] = starts[x] + colors[x] * Adj;
|
|
}
|
|
|
|
// Save maximum size of induced memory space
|
|
allocated_size_ = 0;
|
|
for(shared_layout* x: V)
|
|
allocated_size_ = std::max<size_t>(allocated_size_, starts[x] + x->get_size());
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|