208 lines
8.1 KiB
Python
208 lines
8.1 KiB
Python
import random
|
|
import time
|
|
import sys
|
|
import tools
|
|
import pyviennacl as vcl
|
|
import numpy
|
|
|
|
from deap import algorithms
|
|
|
|
from collections import OrderedDict as odict
|
|
|
|
def closest_divisor(N, x):
|
|
x_low=x_high=max(1,min(round(x),N))
|
|
while N % x_low > 0 and x_low>0:
|
|
x_low = x_low - 1
|
|
while N % x_high > 0 and x_high < N:
|
|
x_high = x_high + 1
|
|
return x_low if x - x_low < x_high - x else x_high
|
|
|
|
class GeneticOperators(object):
|
|
|
|
def __init__(self, device, statement, parameters, parameter_names, TemplateType, build_template):
|
|
self.device = device
|
|
self.statement = statement
|
|
self.parameters = parameters
|
|
self.parameter_names = parameter_names
|
|
self.TemplateType = TemplateType
|
|
self.ParameterType = TemplateType.Parameters
|
|
self.build_template = build_template
|
|
self.cache = {}
|
|
|
|
def init(self):
|
|
while True:
|
|
result = [random.choice(L) for L in self.parameters]
|
|
template = self.build_template(self.TemplateType.Parameters(*result))
|
|
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
|
|
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
|
|
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
|
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
|
|
if template.check(self.statement)==0 and occupancy_record.occupancy >= 10 :
|
|
return result
|
|
|
|
@staticmethod
|
|
def min_to_hyperbol(a, tup):
|
|
x = 1
|
|
for i in range(100):
|
|
dx = 2*(-a**2/x**3 + a*tup[1]/x**2 - tup[0] + x);
|
|
ddx = 6*a**2/x**4 - 4*a*tup[1]/x**3 + 2;
|
|
if abs(dx) < 1e-7 or abs(ddx) < 1e-7:
|
|
break
|
|
x-=dx/ddx;
|
|
if x<1 or x>a:
|
|
x = max(1, min(x, a))
|
|
break
|
|
new_x = int(closest_divisor(a, x))
|
|
new_y = int(a / new_x)
|
|
return (new_x, new_y)
|
|
|
|
def repair(self,func):
|
|
|
|
def repair_impl(child):
|
|
D = odict(zip(self.parameter_names, child))
|
|
dummy_template = self.build_template(self.ParameterType(*D.values()))
|
|
FetchingPolicy = vcl.atidlas.FetchingPolicy;
|
|
D['local-size-0'] = max(1, D['local-size-0'])
|
|
D['local-size-1'] = max(1, D['local-size-1'])
|
|
if 'local-size-1' not in D:
|
|
D['local-size-0'] = min(D['local-size-0'], self.device.max_work_group_size)
|
|
elif D['local-size-0']*D['local-size-1'] > self.device.max_work_group_size:
|
|
res = GeneticOperators.min_to_hyperbol(self.device.max_work_group_size, (D['local-size-0'], D['local-size-1']))
|
|
D['local-size-0'] = res[0]
|
|
D['local-size-1'] = res[1]
|
|
|
|
if self.ParameterType is vcl.atidlas.MatrixProductTemplate.Parameters:
|
|
if dummy_template.A_trans != 'N' and dummy_template.B_trans != 'T':
|
|
D['simd-width'] = 1
|
|
|
|
D['kL'] = max(1, D['kL'])
|
|
D['kS'] = max(1, D['kS'])
|
|
|
|
D['mS'] = max(D['mS'], D['simd-width'])
|
|
D['nS'] = max(D['nS'], D['simd-width'])
|
|
D['mS'] = D['mS'] - D['mS']%D['simd-width']
|
|
D['nS'] = D['nS'] - D['nS']%D['simd-width']
|
|
|
|
|
|
if D['A-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL and D['B-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL:
|
|
D['local-fetch-size-0']=D['local-fetch-size-1']=0
|
|
|
|
else:
|
|
res = GeneticOperators.min_to_hyperbol(D['local-size-0']*D['local-size-1'], (D['local-fetch-size-0'], D['local-fetch-size-1']))
|
|
D['local-fetch-size-0'] = res[0]
|
|
D['local-fetch-size-1'] = res[1]
|
|
|
|
if D['A-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.A_trans=='N' and D['kL'] % D['local-fetch-size-1'] > 0:
|
|
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
|
|
|
|
if D['B-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.B_trans=='T' and D['kL'] % D['local-fetch-size-1'] > 0:
|
|
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
|
|
|
|
D['kS'] = min(D['kL'], D['kS'])
|
|
|
|
return D.values()
|
|
|
|
def wrappper(*args, **kargs):
|
|
offspring = func(*args, **kargs)
|
|
for child in offspring:
|
|
new_child = repair_impl(child)
|
|
for i in range(len(child)):
|
|
if child[i] != new_child[i]:
|
|
child[i] = new_child[i]
|
|
return offspring
|
|
return wrappper
|
|
|
|
def mutate(self, individual, indpb = 0.15):
|
|
for i in individual:
|
|
if random.random() < indpb:
|
|
coef = 2**(1 + numpy.random.poisson())
|
|
funs = [lambda x:x/coef, lambda x:x*coef]
|
|
F = random.choice(funs)
|
|
nF = funs[1] if F==funs[0] else funs[0]
|
|
#swapping-based mutations
|
|
def m0():
|
|
individual[1], individual[3] = individual[3], individual[1]
|
|
def m1():
|
|
individual[4], individual[6] = individual[6], individual[4]
|
|
def m2():
|
|
individual[9], individual[10] = individual[10], individual[9]
|
|
#value modification mutations
|
|
def m3():
|
|
individual[0] = random.choice(self.parameters[0])
|
|
def m4():
|
|
individual[1] = F(individual[1])
|
|
individual[9] = F(individual[9])
|
|
def m5():
|
|
individual[2] = F(individual[2])
|
|
def m6():
|
|
individual[3] = F(individual[3])
|
|
individual[10] = F(individual[10])
|
|
def m7():
|
|
individual[4] = F(individual[4])
|
|
def m8():
|
|
individual[5] = F(individual[5])
|
|
def m9():
|
|
individual[6] = F(individual[6])
|
|
def m10():
|
|
individual[7] = random.choice([x for x in self.parameters[7] if x!=individual[7]])
|
|
def m11():
|
|
individual[8] = random.choice([x for x in self.parameters[8] if x!=individual[8]])
|
|
def m12():
|
|
individual[9] = F(individual[9])
|
|
individual[10] = nF(individual[10])
|
|
def m13():
|
|
individual[10] = F(individual[10])
|
|
individual[9] = nF(individual[9])
|
|
random.choice([m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13])()
|
|
return individual,
|
|
|
|
def evaluate(self, individual):
|
|
if tuple(individual) not in self.cache:
|
|
template = self.build_template(self.TemplateType.Parameters(*individual))
|
|
try:
|
|
self.cache[tuple(individual)] = tools.benchmark(template, self.statement, self.device)
|
|
except:
|
|
self.cache[tuple(individual)] = 10
|
|
return self.cache[tuple(individual)],
|
|
|
|
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric):
|
|
# Evaluate the individuals with an invalid fitness
|
|
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
|
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
|
for ind, fit in zip(invalid_ind, fitnesses):
|
|
ind.fitness.values = fit
|
|
|
|
if halloffame is not None:
|
|
halloffame.update(population)
|
|
|
|
# Begin the generational process
|
|
gen = 0
|
|
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
|
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
|
start_time = time.time()
|
|
while time.time() - start_time < maxtime and gen < maxgen:
|
|
# Vary the population
|
|
offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
|
|
|
|
# Evaluate the individuals with an invalid fitness
|
|
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
|
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
|
for ind, fit in zip(invalid_ind, fitnesses):
|
|
ind.fitness.values = fit
|
|
|
|
# Update the hall of fame with the generated individuals
|
|
if halloffame is not None:
|
|
halloffame.update(offspring)
|
|
|
|
# Select the next generation population
|
|
population[:] = toolbox.select(population + offspring, mu)
|
|
|
|
# Update the statistics with the new population
|
|
gen = gen + 1
|
|
|
|
best_profile = '(%s)'%','.join(map(str,halloffame[0]));
|
|
best_performance = compute_perf(halloffame[0].fitness.values[0])
|
|
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
|
sys.stdout.write('\n')
|
|
return population
|