Files
triton/lib/driver/device.cc

184 lines
5.3 KiB
C++
Executable File

/* Copyright 2015-2017 Philippe Tillet
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <map>
#include <algorithm>
#include <sstream>
#include <cstring>
#include <memory>
#include "triton/driver/device.h"
#include "triton/driver/context.h"
#include "triton/codegen/target.h"
namespace triton
{
namespace driver
{
/* ------------------------ */
// Host //
/* ------------------------ */
std::unique_ptr<codegen::target> host_device::make_target() const {
return std::unique_ptr<codegen::cpu_target>(new codegen::cpu_target());
}
/* ------------------------ */
// CUDA //
/* ------------------------ */
// information query
template<CUdevice_attribute attr>
int cu_device::cuGetInfo() const{
int res;
dispatch::cuDeviceGetAttribute(&res, attr, *cu_);
return res;
}
// convert to nvml
nvmlDevice_t cu_device::nvml_device() const{
std::map<std::string, nvmlDevice_t> map;
std::string key = pci_bus_id();
if(map.find(key)==map.end()){
nvmlDevice_t device;
dispatch::nvmlDeviceGetHandleByPciBusId_v2(key.c_str(), &device);
return map.insert(std::make_pair(key, device)).first->second;
}
return map.at(key);
}
// number of address bits
size_t cu_device::address_bits() const{
return sizeof(size_t)*8;
}
// name
std::string cu_device::name() const {
char tmp[128];
dispatch::cuDeviceGetName(tmp, 128, *cu_);
return std::string(tmp);
}
// PCI bus ID
std::string cu_device::pci_bus_id() const{
char tmp[128];
dispatch::cuDeviceGetPCIBusId(tmp, 128, *cu_);
return std::string(tmp);
}
// force the device to be interpreted as a particular cc
void cu_device::interpret_as(int cc){
interpreted_as_ = std::make_shared<int>(cc);
}
// compute capability
int cu_device::compute_capability() const {
if(interpreted_as_)
return *interpreted_as_;
size_t major = cuGetInfo<CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR>();
size_t minor = cuGetInfo<CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR>();
return major*10 + minor;
}
// maximum number of threads per block
size_t cu_device::max_threads_per_block() const {
return cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK>();
}
// maximum amount of shared memory per block
size_t cu_device::max_shared_memory() const {
return cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN>();
}
// warp size
size_t cu_device::warp_size() const {
return cuGetInfo<CU_DEVICE_ATTRIBUTE_WARP_SIZE>();
}
// maximum block dimensions
std::vector<size_t> cu_device::max_block_dim() const {
std::vector<size_t> result(3);
result[0] = cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X>();
result[1] = cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y>();
result[2] = cuGetInfo<CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z>();
return result;
}
// current SM clock
size_t cu_device::current_sm_clock() const{
unsigned int result;
dispatch::nvmlDeviceGetClockInfo(nvml_device(), NVML_CLOCK_SM, &result);
return result;
}
// max SM clock
size_t cu_device::max_sm_clock() const{
unsigned int result;
dispatch::nvmlDeviceGetMaxClockInfo(nvml_device(), NVML_CLOCK_SM, &result);
return result;
}
// current memory clock
size_t cu_device::current_mem_clock() const{
unsigned int result;
dispatch::nvmlDeviceGetClockInfo(nvml_device(), NVML_CLOCK_MEM, &result);
return result;
}
// max memory clock
size_t cu_device::max_mem_clock() const{
unsigned int result;
dispatch::nvmlDeviceGetMaxClockInfo(nvml_device(), NVML_CLOCK_MEM, &result);
return result;
}
// max memory clock
void cu_device::set_max_clock() {
dispatch::nvmlDeviceSetApplicationsClocks(nvml_device(), max_mem_clock(), max_sm_clock());
}
// print infos
std::string cu_device::infos() const{
std::ostringstream oss;
std::vector<size_t> max_wi_sizes = max_block_dim();
oss << "Platform: CUDA" << std::endl;
oss << "Name: " << name() << std::endl;
oss << "Maximum total work-group size: " << max_threads_per_block() << std::endl;
oss << "Maximum individual work-group sizes: " << max_wi_sizes[0] << ", " << max_wi_sizes[1] << ", " << max_wi_sizes[2] << std::endl;
oss << "Local memory size: " << max_shared_memory() << std::endl;
return oss.str();
}
// target
std::unique_ptr<codegen::target> cu_device::make_target() const {
return std::unique_ptr<codegen::nvidia_cu_target>(new codegen::nvidia_cu_target(compute_capability()));
}
}
}