Files
triton/lib/Dialect/TritonGPU/Transforms/Pipeline.cpp
Shintaro Iwasaki 13669b46a6 [DOCS] Correct spelling (#665)
This PR corrects spelling like #664 for Triton-MLIR. It should not break anything.
2022-09-16 15:07:34 -07:00

588 lines
22 KiB
C++

#include "mlir/IR/BlockAndValueMapping.h"
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
//===----------------------------------------------------------------------===//
//
// This file implements loop software pipelining
// The implementation here is inspired by the pipeline pass in Triton (-v2.0)
// and SCF's LoopPipelining.
//
//===----------------------------------------------------------------------===//
using namespace mlir;
#define GEN_PASS_CLASSES
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
namespace {
class LoopPipeliner {
/// comments on numStages:
/// [0, numStages-1) are in the prologue
/// numStages-1 is appended after the loop body
int numStages;
/// cache forOp we are working on
scf::ForOp forOp;
/// cache YieldOp for this forOp
scf::YieldOp yieldOp;
/// loads to be pipelined
SetVector<Value> loads;
/// the value that each load will be mapped to (after layout conversion)
DenseMap<Value, Value> loadsMapping;
/// load => buffer
DenseMap<Value, Value> loadsBuffer;
/// load => buffer at stage N
DenseMap<Value, SmallVector<Value>> loadStageBuffer;
/// load => after extract
DenseMap<Value, Value> loadsExtract;
///
Value pipelineIterIdx;
///
Value loopIterIdx;
/// value (in loop) => value at stage N
DenseMap<Value, SmallVector<Value>> valueMapping;
/// Block arguments that loads depend on
DenseSet<BlockArgument> depArgs;
/// Operations (inside the loop body) that loads depend on
DenseSet<Operation *> depOps;
/// collect values that v depends on and are defined inside the loop
void collectDeps(Value v, int stages, DenseSet<Value> &deps);
void setValueMapping(Value origin, Value newValue, int stage);
Value lookupOrDefault(Value origin, int stage);
/// return true if this op uses any of `loads`
bool isDirectUserOfAsyncLoad(Operation &op);
/// returns a empty buffer of size <numStages, ...>
triton::gpu::AllocTensorOp allocateEmptyBuffer(Operation *op,
OpBuilder &builder);
public:
LoopPipeliner(scf::ForOp forOp, int numStages)
: forOp(forOp), numStages(numStages) {
// cache yieldOp
yieldOp = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
}
/// Collect loads to pipeline. Return success if we can pipeline this loop
LogicalResult initialize();
/// emit pipelined loads (before loop body)
void emitPrologue();
/// create the new ForOp (add new args & insert prefetched ops)
scf::ForOp createNewForOp();
friend class PipelinePass;
};
// helpers
void LoopPipeliner::setValueMapping(Value origin, Value newValue, int stage) {
if (valueMapping.find(origin) == valueMapping.end())
valueMapping[origin] = SmallVector<Value>(numStages);
valueMapping[origin][stage] = newValue;
}
Value LoopPipeliner::lookupOrDefault(Value origin, int stage) {
if (valueMapping.find(origin) == valueMapping.end())
return origin;
return valueMapping[origin][stage];
}
void LoopPipeliner::collectDeps(Value v, int stages, DenseSet<Value> &deps) {
// Loop-invarant value. skip
if (v.getParentRegion() != &forOp.getLoopBody())
return;
// Since we only need to peel the loop numStages-1 times, don't worry about
// depends that are too far away
if (stages < 0)
return;
if (auto arg = v.dyn_cast<BlockArgument>()) {
deps.insert(v);
// Note: we have iv as the first arg, so the op idx is arg.getArgNumber()-1
collectDeps(yieldOp->getOperand(arg.getArgNumber() - 1), stages - 1, deps);
} else { // value
// v might be in deps, but we still need to visit v.
// This is because v might depends on value in previous iterations
deps.insert(v);
for (Value op : v.getDefiningOp()->getOperands())
collectDeps(op, stages, deps);
}
}
bool LoopPipeliner::isDirectUserOfAsyncLoad(Operation &op) {
for (Value loadOp : loads) {
assert(loadOp.hasOneUse() &&
"load should only have one use (ConvertLayout)");
Value loadUseResult = loadOp.getUsers().begin()->getResult(0);
for (Value opOperand : op.getOperands()) {
if (opOperand == loadUseResult)
return true;
}
}
return false;
}
triton::gpu::AllocTensorOp
LoopPipeliner::allocateEmptyBuffer(Operation *op, OpBuilder &builder) {
// allocate a buffer for each pipelined tensor
// shape: e.g. (numStages==4), <32x64xbf16> -> <4x32x64xbf16>
Value convertLayout = loadsMapping[op->getResult(0)];
if (auto tensorType = convertLayout.getType().dyn_cast<RankedTensorType>()) {
SmallVector<int64_t> shape(tensorType.getShape().begin(),
tensorType.getShape().end());
shape.insert(shape.begin(), numStages);
Type elementType = tensorType.getElementType();
// The encoding of the buffer is similar to the original tensor
Attribute encoding = tensorType.getEncoding();
auto bufferType = RankedTensorType::get(shape, elementType, encoding);
return builder.create<triton::gpu::AllocTensorOp>(convertLayout.getLoc(),
bufferType);
}
llvm_unreachable("Async copy's return should be of RankedTensorType");
}
/// A load instruction can be pipelined if:
/// - the load doesn't depend on any other loads (after loop peeling)
/// - (?) this load is not a loop-invariant value (we should run LICM before
/// this pass?)
LogicalResult LoopPipeliner::initialize() {
Block *loop = forOp.getBody();
// can we use forOp.walk(...) here?
SmallVector<triton::LoadOp, 2> allLoads;
for (Operation &op : *loop)
if (auto loadOp = dyn_cast<triton::LoadOp>(&op))
allLoads.push_back(loadOp);
// Early stop: no need to continue if there is no load in the loop.
if (allLoads.empty())
return failure();
// load => values that it depends on
DenseMap<Value, DenseSet<Value>> loadDeps;
for (triton::LoadOp loadOp : allLoads) {
DenseSet<Value> deps;
for (Value op : loadOp->getOperands())
collectDeps(op, numStages - 1, deps);
loadDeps[loadOp] = deps;
}
// Don't pipeline loads that depend on other loads
// (Because if a load depends on another load, this load needs to wait on the
// other load in the prologue, which is against the point of the pipeline
// pass)
for (triton::LoadOp loadOp : allLoads) {
bool isCandiate = true;
for (triton::LoadOp other : allLoads) {
if (loadDeps[loadOp].contains(other)) {
isCandiate = false;
break;
}
}
// For now, we only pipeline loads that have one covert_layout (to smem) use
// TODO: lift this constraint in the future
if (isCandiate && loadOp.getResult().hasOneUse()) {
isCandiate = false;
Operation *use = *loadOp.getResult().getUsers().begin();
if (auto convertLayout =
llvm::dyn_cast<triton::gpu::ConvertLayoutOp>(use)) {
if (auto tensorType = convertLayout.getResult()
.getType()
.dyn_cast<RankedTensorType>()) {
if (tensorType.getEncoding().isa<triton::gpu::SharedEncodingAttr>()) {
isCandiate = true;
loadsMapping[loadOp] = convertLayout;
}
}
}
} else
isCandiate = false;
if (isCandiate)
loads.insert(loadOp);
}
// we have some loads to pipeline
if (!loads.empty()) {
// update depArgs & depOps
for (Value loadOp : loads) {
for (Value dep : loadDeps[loadOp]) {
// TODO: we should record the stage that the value is depended on
if (auto arg = dep.dyn_cast<BlockArgument>())
depArgs.insert(arg);
else
depOps.insert(dep.getDefiningOp());
}
}
return success();
}
return failure();
}
void LoopPipeliner::emitPrologue() {
// llvm::errs() << "loads to pipeline...:\n";
// for (Value load : loads)
// llvm::errs() << load << "\n";
OpBuilder builder(forOp);
for (BlockArgument &arg : forOp.getRegionIterArgs()) {
OpOperand &operand = forOp.getOpOperandForRegionIterArg(arg);
setValueMapping(arg, operand.get(), 0);
}
// prologue from [0, numStage-1)
Value iv = forOp.getLowerBound();
pipelineIterIdx = builder.create<arith::ConstantIntOp>(iv.getLoc(), 0, 32);
for (int stage = 0; stage < numStages - 1; ++stage) {
// special handling for induction variable as the increment is implicit
if (stage != 0)
iv = builder.create<arith::AddIOp>(iv.getLoc(), iv, forOp.getStep());
setValueMapping(forOp.getInductionVar(), iv, stage);
// special handling for loop condition as there is no condition in ForOp
Value loopCond = builder.create<arith::CmpIOp>(
iv.getLoc(), arith::CmpIPredicate::slt, iv, forOp.getUpperBound());
// rematerialize peeled values
SmallVector<Operation *> orderedDeps;
for (Operation &op : forOp.getLoopBody().front()) {
if (depOps.contains(&op))
orderedDeps.push_back(&op);
else if (loads.contains(op.getResult(0)))
orderedDeps.push_back(&op);
}
assert(depOps.size() + loads.size() == orderedDeps.size() &&
"depOps contains invalid values");
for (Operation *op : orderedDeps) {
Operation *newOp = nullptr;
if (loads.contains(op->getResult(0))) {
// Allocate empty buffer
if (stage == 0) {
loadsBuffer[op->getResult(0)] = allocateEmptyBuffer(op, builder);
loadStageBuffer[op->getResult(0)] = {loadsBuffer[op->getResult(0)]};
}
// load => copy async
// TODO: check if the hardware supports async copy
if (auto loadOp = llvm::dyn_cast<triton::LoadOp>(op)) {
newOp = builder.create<triton::gpu::InsertSliceAsyncOp>(
op->getLoc(), loadsBuffer[loadOp].getType(),
lookupOrDefault(loadOp.ptr(), stage),
loadStageBuffer[loadOp][stage], pipelineIterIdx,
lookupOrDefault(loadOp.mask(), stage),
lookupOrDefault(loadOp.other(), stage), loadOp.cache(),
loadOp.evict(), loadOp.isVolatile(), /*axis*/ 0);
loadStageBuffer[loadOp].push_back(newOp->getResult(0));
} else
llvm_unreachable("This should be LoadOp");
} else {
newOp = builder.clone(*op);
// Update loop-carried uses
for (unsigned opIdx = 0; opIdx < op->getNumOperands(); ++opIdx) {
auto it = valueMapping.find(op->getOperand(opIdx));
if (it != valueMapping.end()) {
Value v = it->second[stage];
assert(v);
newOp->setOperand(opIdx, v);
} // else, op at opIdx is a loop-invariant value
}
}
// If this is a load/async_copy, we need to update the mask
if (llvm::isa<triton::LoadOp, triton::gpu::InsertSliceAsyncOp>(newOp)) {
Value mask = llvm::isa<triton::LoadOp>(newOp) ? newOp->getOperand(1)
: newOp->getOperand(3);
// assert(I1 or TensorOf<[I1]>);
OpBuilder::InsertionGuard g(builder);
// TODO: move this out of the loop
builder.setInsertionPoint(newOp);
Value splatCond = builder.create<triton::SplatOp>(
mask.getLoc(), mask.getType(), loopCond);
Value newMask =
builder.create<arith::AndIOp>(mask.getLoc(), mask, splatCond);
// TODO: better way to do this?
if (llvm::isa<triton::LoadOp>(newOp))
newOp->setOperand(1, newMask);
else // InsertSliceAsyncOp
newOp->setOperand(3, newMask);
}
// update mapping of results
for (unsigned dstIdx : llvm::seq(unsigned(0), op->getNumResults())) {
Value originalResult = op->getResult(dstIdx);
// copy_async will update the value of its only use
// TODO: load should no be used in the preheader?
if (loads.contains(originalResult)) {
break;
// originalResult = loadsMapping[originalResult];
}
setValueMapping(originalResult, newOp->getResult(dstIdx), stage);
// update mapping for loop-carried values (args)
for (OpOperand &operand : yieldOp->getOpOperands()) {
if (operand.get() == op->getResult(dstIdx))
setValueMapping(
forOp.getRegionIterArgs()[operand.getOperandNumber()],
newOp->getResult(dstIdx), stage + 1);
}
}
}
pipelineIterIdx = builder.create<arith::AddIOp>(
iv.getLoc(), pipelineIterIdx,
builder.create<arith::ConstantIntOp>(iv.getLoc(), 1, 32));
} // for (int stage = 0; stage < numStages - 1; ++stage)
// async.wait & extract_slice
Operation *asyncWait = builder.create<triton::gpu::AsyncWaitOp>(
loads[0].getLoc(), loads.size() * (numStages - 2));
loopIterIdx = builder.create<arith::ConstantIntOp>(iv.getLoc(), 0, 32);
for (Value loadOp : loads) {
Value extractSlice = builder.create<triton::gpu::ExtractSliceOp>(
loadOp.getLoc(), loadsMapping[loadOp].getType(),
loadStageBuffer[loadOp][numStages - 1], loopIterIdx, /*axis*/ 0);
loadsExtract[loadOp] = extractSlice;
}
}
scf::ForOp LoopPipeliner::createNewForOp() {
OpBuilder builder(forOp);
// order of new args:
// (original args),
// (insertSliceAsync buffer at stage numStages - 1) for each load
// (extracted tensor) for each load
// (depArgs at stage numStages-1)
// (iv at stage numStages-1)
// (pipeline iteration index)
// (loop iteration index)
SmallVector<Value> newLoopArgs;
// We need this to update operands for yield
// original block arg => new arg's idx
DenseMap<BlockArgument, size_t> depArgsIdx;
for (auto v : forOp.getIterOperands())
newLoopArgs.push_back(v);
size_t bufferIdx = newLoopArgs.size();
for (Value loadOp : loads)
newLoopArgs.push_back(loadStageBuffer[loadOp].back());
size_t loadIdx = newLoopArgs.size();
for (Value loadOp : loads)
newLoopArgs.push_back(loadsExtract[loadOp]);
size_t depArgsBeginIdx = newLoopArgs.size();
for (BlockArgument depArg : depArgs) {
depArgsIdx[depArg] = newLoopArgs.size();
newLoopArgs.push_back(valueMapping[depArg][numStages - 1]);
}
size_t nextIVIdx = newLoopArgs.size();
newLoopArgs.push_back(valueMapping[forOp.getInductionVar()][numStages - 2]);
newLoopArgs.push_back(pipelineIterIdx);
newLoopArgs.push_back(loopIterIdx);
for (size_t i = 0; i < newLoopArgs.size(); ++i)
assert(newLoopArgs[i]);
// 1. signature of the new ForOp
auto newForOp = builder.create<scf::ForOp>(
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
forOp.getStep(), newLoopArgs);
// 2. body of the new ForOp
builder.setInsertionPointToStart(newForOp.getBody());
BlockAndValueMapping mapping;
for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs()))
mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
// 2.1 clone the loop body, replace original args with args of the new ForOp
// Insert async wait if necessary.
for (Operation &op : forOp.getBody()->without_terminator()) {
Operation *newOp = builder.clone(op, mapping);
// update mapping of results
for (unsigned dstIdx : llvm::seq(unsigned(0), op.getNumResults()))
mapping.map(op.getResult(dstIdx), newOp->getResult(dstIdx));
}
// 3. replace loads with block args (from prologue)
for (size_t idx = 0; idx < loads.size(); ++idx) {
Value load = loads[idx];
assert(load.hasOneUse() &&
"we assume that this load has one use (ConvertLayout)");
Value loadUse = load.getUsers().begin()->getResult(0);
mapping.lookup(loadUse).replaceAllUsesWith(
newForOp.getRegionIterArgs()[loadIdx + idx]);
// delete old load and layout conversion
mapping.lookup(loadUse).getDefiningOp()->erase();
mapping.lookup(load).getDefiningOp()->erase();
}
// 4. prefetch the next iteration
SmallVector<Operation *> orderedDeps;
for (Operation &op : forOp.getLoopBody().front()) {
if (depOps.contains(&op))
orderedDeps.push_back(&op);
else if (loads.contains(op.getResult(0)))
orderedDeps.push_back(&op);
}
assert(depOps.size() + loads.size() == orderedDeps.size() &&
"depOps contains invalid values");
BlockAndValueMapping nextMapping;
DenseMap<BlockArgument, Value> depArgsMapping;
size_t argIdx = 0;
for (BlockArgument arg : depArgs) {
nextMapping.map(arg,
newForOp.getRegionIterArgs()[argIdx + depArgsBeginIdx]);
++argIdx;
}
// special handling for iv & loop condition
Value nextIV = builder.create<arith::AddIOp>(
newForOp.getInductionVar().getLoc(),
newForOp.getRegionIterArgs()[nextIVIdx], newForOp.getStep());
Value nextLoopCond =
builder.create<arith::CmpIOp>(nextIV.getLoc(), arith::CmpIPredicate::slt,
nextIV, newForOp.getUpperBound());
// slice index
SmallVector<Value> nextBuffers;
SmallVector<Value> extractSlices;
pipelineIterIdx = newForOp.getRegionIterArgs()[nextIVIdx + 1];
Value insertSliceIndex = builder.create<arith::RemSIOp>(
nextIV.getLoc(), pipelineIterIdx,
builder.create<arith::ConstantIntOp>(nextIV.getLoc(), numStages, 32));
loopIterIdx = newForOp.getRegionIterArgs()[nextIVIdx + 2];
Value extractSliceIndex = builder.create<arith::RemSIOp>(
nextIV.getLoc(), loopIterIdx,
builder.create<arith::ConstantIntOp>(nextIV.getLoc(), numStages, 32));
for (Operation *op : orderedDeps) {
Operation *nextOp = nullptr;
// TODO(da): does this work if loadOp has no mask?
// update loading mask
if (loads.contains(op->getResult(0))) {
auto loadOp = llvm::cast<triton::LoadOp>(op);
Value mask = loadOp.mask();
if (mask) {
Value splatCond = builder.create<triton::SplatOp>(
mask.getLoc(), mask.getType(), nextLoopCond);
Value newMask = builder.create<arith::AndIOp>(
mask.getLoc(), splatCond, nextMapping.lookupOrDefault(mask));
// if mask is defined outside the loop, don't update the map more than
// once
if (!(forOp.isDefinedOutsideOfLoop(mask) && nextMapping.contains(mask)))
nextMapping.map(mask, newMask);
}
Value insertAsyncOp = builder.create<triton::gpu::InsertSliceAsyncOp>(
op->getLoc(), loadsBuffer[loadOp].getType(),
nextMapping.lookupOrDefault(loadOp.ptr()),
newForOp.getRegionIterArgs()[bufferIdx + nextBuffers.size()],
insertSliceIndex, nextMapping.lookupOrDefault(loadOp.mask()),
nextMapping.lookupOrDefault(loadOp.other()), loadOp.cache(),
loadOp.evict(), loadOp.isVolatile(), /*axis*/ 0);
nextBuffers.push_back(insertAsyncOp);
nextOp = builder.create<triton::gpu::ExtractSliceOp>(
op->getLoc(), loadsMapping[loadOp].getType(), insertAsyncOp,
extractSliceIndex, /*axis*/ 0);
extractSlices.push_back(nextOp->getResult(0));
} else
nextOp = builder.clone(*op, nextMapping);
// update mapping of results
for (unsigned dstIdx : llvm::seq(unsigned(0), op->getNumResults())) {
nextMapping.map(op->getResult(dstIdx), nextOp->getResult(dstIdx));
// if this is a loop-carried value, update the mapping for yield
auto originYield = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
for (OpOperand &operand : originYield->getOpOperands()) {
if (operand.get() == op->getResult(dstIdx)) {
size_t originIdx = operand.getOperandNumber();
size_t newArgIdx = depArgsIdx[forOp.getRegionIterArgs()[originIdx]];
BlockArgument newArg = newForOp.getRegionIterArgs()[newArgIdx];
depArgsMapping[newArg] = nextOp->getResult(dstIdx);
}
}
}
}
// async.wait & extract_slice
Operation *asyncWait = builder.create<triton::gpu::AsyncWaitOp>(
loads[0].getLoc(), loads.size() * (numStages - 2));
for (auto it = extractSlices.rbegin(); it != extractSlices.rend(); ++it) {
// move extract_slice after asyncWait
it->getDefiningOp()->moveAfter(asyncWait);
}
// bump iteration count
pipelineIterIdx = builder.create<arith::AddIOp>(
nextIV.getLoc(), pipelineIterIdx,
builder.create<arith::ConstantIntOp>(nextIV.getLoc(), 1, 32));
loopIterIdx = builder.create<arith::AddIOp>(
nextIV.getLoc(), loopIterIdx,
builder.create<arith::ConstantIntOp>(nextIV.getLoc(), 1, 32));
// Finally, the YieldOp, need to sync with the order of newLoopArgs
SmallVector<Value> yieldValues;
for (Value v : forOp.getBody()->getTerminator()->getOperands())
yieldValues.push_back(mapping.lookup(v));
for (Value nextBuffer : nextBuffers)
yieldValues.push_back(nextBuffer);
for (Value nextSlice : extractSlices)
yieldValues.push_back(nextSlice);
for (size_t i = depArgsBeginIdx; i < nextIVIdx; ++i)
yieldValues.push_back(
depArgsMapping.lookup(newForOp.getRegionIterArgs()[i]));
yieldValues.push_back(nextIV);
yieldValues.push_back(pipelineIterIdx);
yieldValues.push_back(loopIterIdx);
builder.setInsertionPointToEnd(newForOp.getBody());
auto test = builder.create<scf::YieldOp>(
forOp.getBody()->getTerminator()->getLoc(), yieldValues);
return newForOp;
}
// ref: mlir/lib/Dialect/SCF/Transforms/LoopPipelining.cpp
struct PipelinePass : public TritonGPUPipelineBase<PipelinePass> {
PipelinePass() = default;
PipelinePass(int numStages) { this->numStages = numStages; }
void runOnOperation() override {
int numStages = this->numStages;
if (numStages <= 1)
return;
getOperation()->walk([&](scf::ForOp forOp) -> void {
LoopPipeliner pipeliner(forOp, numStages);
if (pipeliner.initialize().failed())
return;
pipeliner.emitPrologue();
scf::ForOp newForOp = pipeliner.createNewForOp();
// replace the original loop
for (unsigned i = 0; i < forOp->getNumResults(); ++i)
forOp->getResult(i).replaceAllUsesWith(newForOp->getResult(i));
forOp->erase();
});
}
};
} // anonymous namespace
std::unique_ptr<Pass> mlir::createTritonGPUPipelinePass(int numStages) {
return std::make_unique<PipelinePass>(numStages);
}