107 lines
3.6 KiB
C++
107 lines
3.6 KiB
C++
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
|
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
|
|
|
|
#include <memory>
|
|
|
|
using namespace mlir;
|
|
|
|
#define GEN_PASS_CLASSES
|
|
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
|
|
|
|
class TritonGPUVerifier : public TritonGPUVerifierBase<TritonGPUVerifier> {
|
|
public:
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
ModuleOp m = getOperation();
|
|
|
|
// The idea is similar to mlir/lib/IR/Verifier.cpp
|
|
verifyImpl(m.getOperation());
|
|
}
|
|
|
|
private:
|
|
LogicalResult verifySingleOp(Operation *op) {
|
|
if (auto dotOp = llvm::dyn_cast<triton::DotOp>(op)) {
|
|
Type aType = dotOp.a().getType();
|
|
Type bType = dotOp.b().getType();
|
|
Type cType = dotOp.c().getType();
|
|
Type dType = dotOp.d().getType();
|
|
for (auto it : llvm::zip(llvm::SmallVector<Type>{aType, bType},
|
|
llvm::SmallVector<char>{'a', 'b'})) {
|
|
Type type = std::get<0>(it);
|
|
char name = std::get<1>(it);
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
|
Attribute encoding = tensorType.getEncoding();
|
|
if (!encoding)
|
|
return dotOp.emitError() << name << " should have encoding";
|
|
if (!encoding.isa<triton::gpu::SharedEncodingAttr>())
|
|
return dotOp.emitError() << name << " should be of shared layout";
|
|
} else
|
|
return dotOp.emitError()
|
|
<< name << "'s type should be of RankedTensorType";
|
|
}
|
|
|
|
Attribute cLayout;
|
|
for (auto it : llvm::zip(llvm::SmallVector<Type>{cType, dType},
|
|
llvm::SmallVector<char>{'c', 'd'})) {
|
|
Type type = std::get<0>(it);
|
|
char name = std::get<1>(it);
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
|
Attribute encoding = tensorType.getEncoding();
|
|
if (!encoding)
|
|
return dotOp.emitError() << name << " should have encoding";
|
|
if (!encoding.isa<triton::gpu::MmaEncodingAttr>() &&
|
|
!encoding.isa<triton::gpu::BlockedEncodingAttr>())
|
|
return dotOp.emitError()
|
|
<< name << " should be of distributed layout";
|
|
if (name == 'c')
|
|
cLayout = encoding;
|
|
else if (encoding != cLayout)
|
|
return dotOp.emitError() << "d & c should have the same layout";
|
|
} else
|
|
return dotOp.emitError()
|
|
<< name << "'s type should be of RankedTensorType";
|
|
}
|
|
|
|
// signalPassFailure();
|
|
}
|
|
if (auto loadOp = llvm::dyn_cast<triton::LoadOp>(op)) {
|
|
// TODO: fill this
|
|
}
|
|
if (auto storeOp = llvm::dyn_cast<triton::StoreOp>(op)) {
|
|
// TODO: fill this
|
|
}
|
|
if (auto gepOp = llvm::dyn_cast<triton::GEPOp>(op)) {
|
|
// TODO: fill this
|
|
}
|
|
// Triton builtin Ops
|
|
if (llvm::isa<triton::GetProgramIdOp, triton::GetNumProgramsOp,
|
|
triton::MakeRangeOp>(op)) {
|
|
// TODO: fill this
|
|
}
|
|
if (auto atomicRmw = llvm::dyn_cast<triton::AtomicRMWOp>(op)) {
|
|
// TODO: fill this
|
|
}
|
|
if (auto atomicCas = llvm::dyn_cast<triton::AtomicCASOp>(op)) {
|
|
// TODO: fill this
|
|
}
|
|
|
|
// TODO: Arithmetic, SCF, TritonGPU ops
|
|
return success();
|
|
}
|
|
|
|
void verifyImpl(Operation *op) {
|
|
if (verifySingleOp(op).failed())
|
|
signalPassFailure();
|
|
|
|
// verify that all child regions are ok
|
|
for (Region ®ion : op->getRegions())
|
|
for (Block &block : region)
|
|
for (Operation &childOp : block)
|
|
verifyImpl(&childOp);
|
|
}
|
|
};
|
|
|
|
std::unique_ptr<Pass> mlir::createTritonGPUVerifier() {
|
|
return std::make_unique<TritonGPUVerifier>();
|
|
}
|