Files
triton/lib/Dialect/TritonGPU/Transforms/Verifier.cpp
2022-08-18 12:49:37 -07:00

107 lines
3.6 KiB
C++

#include "triton/Dialect/TritonGPU/IR/Dialect.h"
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
#include <memory>
using namespace mlir;
#define GEN_PASS_CLASSES
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
class TritonGPUVerifier : public TritonGPUVerifierBase<TritonGPUVerifier> {
public:
void runOnOperation() override {
MLIRContext *context = &getContext();
ModuleOp m = getOperation();
// The idea is similar to mlir/lib/IR/Verifier.cpp
verifyImpl(m.getOperation());
}
private:
LogicalResult verifySingleOp(Operation *op) {
if (auto dotOp = llvm::dyn_cast<triton::DotOp>(op)) {
Type aType = dotOp.a().getType();
Type bType = dotOp.b().getType();
Type cType = dotOp.c().getType();
Type dType = dotOp.d().getType();
for (auto it : llvm::zip(llvm::SmallVector<Type>{aType, bType},
llvm::SmallVector<char>{'a', 'b'})) {
Type type = std::get<0>(it);
char name = std::get<1>(it);
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
Attribute encoding = tensorType.getEncoding();
if (!encoding)
return dotOp.emitError() << name << " should have encoding";
if (!encoding.isa<triton::gpu::SharedEncodingAttr>())
return dotOp.emitError() << name << " should be of shared layout";
} else
return dotOp.emitError()
<< name << "'s type should be of RankedTensorType";
}
Attribute cLayout;
for (auto it : llvm::zip(llvm::SmallVector<Type>{cType, dType},
llvm::SmallVector<char>{'c', 'd'})) {
Type type = std::get<0>(it);
char name = std::get<1>(it);
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
Attribute encoding = tensorType.getEncoding();
if (!encoding)
return dotOp.emitError() << name << " should have encoding";
if (!encoding.isa<triton::gpu::MmaEncodingAttr>() &&
!encoding.isa<triton::gpu::BlockedEncodingAttr>())
return dotOp.emitError()
<< name << " should be of distributed layout";
if (name == 'c')
cLayout = encoding;
else if (encoding != cLayout)
return dotOp.emitError() << "d & c should have the same layout";
} else
return dotOp.emitError()
<< name << "'s type should be of RankedTensorType";
}
// signalPassFailure();
}
if (auto loadOp = llvm::dyn_cast<triton::LoadOp>(op)) {
// TODO: fill this
}
if (auto storeOp = llvm::dyn_cast<triton::StoreOp>(op)) {
// TODO: fill this
}
if (auto gepOp = llvm::dyn_cast<triton::GEPOp>(op)) {
// TODO: fill this
}
// Triton builtin Ops
if (llvm::isa<triton::GetProgramIdOp, triton::GetNumProgramsOp,
triton::MakeRangeOp>(op)) {
// TODO: fill this
}
if (auto atomicRmw = llvm::dyn_cast<triton::AtomicRMWOp>(op)) {
// TODO: fill this
}
if (auto atomicCas = llvm::dyn_cast<triton::AtomicCASOp>(op)) {
// TODO: fill this
}
// TODO: Arithmetic, SCF, TritonGPU ops
return success();
}
void verifyImpl(Operation *op) {
if (verifySingleOp(op).failed())
signalPassFailure();
// verify that all child regions are ok
for (Region &region : op->getRegions())
for (Block &block : region)
for (Operation &childOp : block)
verifyImpl(&childOp);
}
};
std::unique_ptr<Pass> mlir::createTritonGPUVerifier() {
return std::make_unique<TritonGPUVerifier>();
}