146 lines
4.4 KiB
Python
146 lines
4.4 KiB
Python
'''Train CIFAR10 with PyTorch.'''
|
|
from __future__ import print_function
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import torch.nn.functional as F
|
|
import torch.backends.cudnn as cudnn
|
|
|
|
import torchvision
|
|
import torchvision.transforms as transforms
|
|
|
|
import os
|
|
import argparse
|
|
import numpy as np
|
|
import random
|
|
|
|
from models import *
|
|
from utils import progress_bar
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
|
|
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
|
|
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
|
|
args = parser.parse_args()
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
best_acc = 0 # best test accuracy
|
|
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
|
|
|
|
# Data
|
|
print('==> Preparing data..')
|
|
transform_train = transforms.Compose([
|
|
transforms.RandomCrop(32, padding=4),
|
|
transforms.RandomHorizontalFlip(),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
|
])
|
|
|
|
transform_test = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
|
])
|
|
|
|
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
|
|
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
|
|
|
|
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
|
|
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
|
|
|
|
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
|
|
|
|
# Model
|
|
print('==> Building model..')
|
|
net = LeNet()
|
|
# net = VGG('VGG19')
|
|
# net = ResNet18()
|
|
# net = PreActResNet18()
|
|
# net = GoogLeNet()
|
|
# net = DenseNet121()
|
|
# net = ResNeXt29_2x64d()
|
|
# net = MobileNet()
|
|
# net = MobileNetV2()
|
|
# net = DPN92()
|
|
# net = ShuffleNetG2()
|
|
# net = SENet18()
|
|
# net = ShuffleNetV2(1)
|
|
net = net.to(device)
|
|
if device == 'cuda':
|
|
net = torch.nn.DataParallel(net)
|
|
cudnn.benchmark = False
|
|
|
|
if args.resume:
|
|
# Load checkpoint.
|
|
print('==> Resuming from checkpoint..')
|
|
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
|
|
checkpoint = torch.load('./checkpoint/ckpt.t7')
|
|
net.load_state_dict(checkpoint['net'])
|
|
best_acc = checkpoint['acc']
|
|
start_epoch = checkpoint['epoch']
|
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
|
|
|
|
# Training
|
|
def train(epoch):
|
|
print('\nEpoch: %d' % epoch)
|
|
net.train()
|
|
train_loss = 0
|
|
correct = 0
|
|
total = 0
|
|
for batch_idx, (inputs, targets) in enumerate(trainloader):
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
optimizer.zero_grad()
|
|
outputs = net(inputs)
|
|
loss = criterion(outputs, targets)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
train_loss += loss.item()
|
|
_, predicted = outputs.max(1)
|
|
total += targets.size(0)
|
|
correct += predicted.eq(targets).sum().item()
|
|
|
|
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
|
|
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
|
|
|
|
def test(epoch):
|
|
global best_acc
|
|
net.eval()
|
|
test_loss = 0
|
|
correct = 0
|
|
total = 0
|
|
with torch.no_grad():
|
|
for batch_idx, (inputs, targets) in enumerate(testloader):
|
|
inputs, targets = inputs.to(device), targets.to(device)
|
|
outputs = net(inputs)
|
|
loss = criterion(outputs, targets)
|
|
|
|
test_loss += loss.item()
|
|
_, predicted = outputs.max(1)
|
|
total += targets.size(0)
|
|
correct += predicted.eq(targets).sum().item()
|
|
|
|
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
|
|
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
|
|
|
|
# Save checkpoint.
|
|
acc = 100.*correct/total
|
|
if acc > best_acc:
|
|
print('Saving..')
|
|
state = {
|
|
'net': net.state_dict(),
|
|
'acc': acc,
|
|
'epoch': epoch,
|
|
}
|
|
if not os.path.isdir('checkpoint'):
|
|
os.mkdir('checkpoint')
|
|
torch.save(state, './checkpoint/ckpt.t7')
|
|
best_acc = acc
|
|
|
|
|
|
for epoch in range(start_epoch, start_epoch+200):
|
|
train(epoch)
|
|
test(epoch)
|