Files
triton/python/triton/testing.py
2022-01-13 23:38:32 -08:00

335 lines
12 KiB
Python

import os
import subprocess
import sys
import torch
import triton._C.libtriton.triton as _triton
from .code_gen import OutOfResources
try:
import triton._C.libtriton.cutlass as _cutlass
has_cutlass = True
except ImportError:
_cutlass = None
has_cutlass = False
def catch_oor(kernel, pytest_handle=None):
try:
res = kernel()
except OutOfResources as e:
if pytest_handle:
pytest_handle.skip(str(e))
return None
return res
def sparsify_tensor(x, mask, block):
ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device)
for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))):
ret[:, idx, :, :] = x[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block]
return ret
def cutlass_matmul(a, b):
if _cutlass is None:
raise RuntimeError("Cannot find cutlass library")
M, N = a.shape[0], b.shape[1]
Ka, Kb = a.shape[1], b.shape[0]
assert Ka == Kb
assert a.dtype == b.dtype
assert a.device == b.device
# allocate output
c = torch.empty_strided((M, N), (1, M), dtype=a.dtype, device=a.device)
# run function
dtype = str(a.dtype).split('.')[-1]
_cutlass.matmul(a.data_ptr(), b.data_ptr(), c.data_ptr(),
M, N, Ka,
a.stride(0), a.stride(1),
b.stride(0), b.stride(1),
c.stride(0), c.stride(1),
dtype, dtype, dtype,
a.device.index, torch.cuda.current_stream(a.device).cuda_stream)
return c
def mask_tensor(x, mask, block, value=0):
ret = x.clone()
for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)):
ret[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] = value
return ret
def assert_almost_equal(x, y, decimal=2, err_msg=''):
import numpy.testing as npt
if isinstance(x, torch.Tensor):
if x.dtype == torch.bfloat16:
x = x.float()
x = x.cpu().detach().numpy()
if isinstance(y, torch.Tensor):
if y.dtype == torch.bfloat16:
y = y.float()
y = y.cpu().detach().numpy()
npt.assert_array_almost_equal(x, y, err_msg=err_msg, decimal=decimal)
def allclose(x, y, tol=1e-2):
if x.dtype != y.dtype:
raise RuntimeError(f'{x.dtype} did not match with {x.dtype}')
if x.shape != y.shape:
raise RuntimeError(f'{x.shape} did not match with {y.shape}')
if x.dtype == torch.bool:
return torch.sum(x ^ y) == 0
if x.dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
tol = 0
diff = abs(x - y)
x_max = torch.max(x)
y_max = torch.max(y)
tol = 1e-2
err = torch.max(diff) / torch.max(x_max, y_max)
return err <= tol
def nvsmi(attrs):
attrs = ','.join(attrs)
cmd = ['nvidia-smi', '-i', '0', '--query-gpu=' + attrs, '--format=csv,noheader,nounits']
out = subprocess.check_output(cmd)
ret = out.decode(sys.stdout.encoding).split(',')
ret = [int(x) for x in ret]
return ret
def do_bench(fn, warmup=25, rep=100, grad_to_none=None, percentiles=[0.5, 0.2, 0.8], record_clocks=False):
"""
Benchmark the runtime of the provided function. By default, return the median runtime of :code:`fn` along with
the 20-th and 80-th performance percentile.
:param fn: Function to benchmark
:type fn: Callable
:param warmup: Warmup time (in ms)
:type warmup: int
:param rep: Repetition time (in ms)
:type rep: int
:param grad_to_none: Reset the gradient of the provided tensor to None
:type grad_to_none: torch.tensor, optional
:param percentiles: Performance percentile to return in addition to the median.
:type percentiles: list[float]
"""
# Estimate the runtime of the function
fn()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(5):
fn()
end_event.record()
torch.cuda.synchronize()
estimate_ms = start_event.elapsed_time(end_event) / 5
# compute number of warmup and repeat
n_warmup = max(1, int(warmup / estimate_ms))
n_repeat = max(1, int(rep / estimate_ms))
# We maintain a buffer of 256 MB that we clear
# before each kernel call to make sure that the L2
# doesn't contain any input data before the run
start_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
end_event = [torch.cuda.Event(enable_timing=True) for i in range(n_repeat)]
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
# Warm-up
for _ in range(n_warmup):
fn()
# Benchmark
for i in range(n_repeat):
# we don't want `fn` to accumulate gradient values
# if it contains a backward pass. So we clear the
# provided gradients
if grad_to_none is not None:
for x in grad_to_none:
x.grad = None
# we clear the L2 cache before each run
cache.zero_()
# record time of `fn`
start_event[i].record()
fn()
end_event[i].record()
# Record clocks
torch.cuda.synchronize()
times = torch.tensor([s.elapsed_time(e) for s, e in zip(start_event, end_event)])
if percentiles:
percentiles = torch.quantile(times, torch.tensor(percentiles)).tolist()
return tuple(percentiles)
else:
return torch.mean(times).item()
class Benchmark:
"""
This class is used by the :code:`perf_report` function to generate line plots with a concise API.
"""
def __init__(
self,
x_names,
x_vals,
line_arg,
line_vals,
line_names,
plot_name,
args,
xlabel='',
ylabel='',
x_log=False,
y_log=False,
color=None,
styles=None,
):
"""
Constructor
:param x_names: Name of the arguments that should appear on the x axis of the plot. If the list contains more than one element, all the arguments are assumed to have the same value.
:type x_names: List[str]
:param x_vals: List of values to use for the arguments in :code:`x_names`.
:type x_vals: List[Any]
:param line_arg: Argument name for which different values correspond to different lines in the plot.
:type line_arg: str
:param line_vals: List of values to use for the arguments in :code:`line_arg`.
:type line_vals: List[str]
:param line_names: Label names for the different lines.
:type line_names: List[str]
:param plot_name: Name of the plot.
:type plot_name: str
:param args: List of arguments to remain fixed throughout the benchmark.
:type args: List[str]
:param xlabel: Label for the x axis of the plot.
:type xlabel: str, optional
:param ylabel: Label for the y axis of the plot.
:type ylabel: str, optional
:param x_log: Whether the x axis should be log scale.
:type x_log: bool, optional
:param y_log: Whether the y axis should be log scale.
:type y_log: bool, optional
"""
self.x_names = x_names
self.x_vals = x_vals
self.x_log = x_log
self.line_arg = line_arg
self.line_vals = line_vals
self.line_names = line_names
self.y_log = y_log
self.styles = styles
# plot info
self.xlabel = xlabel
self.ylabel = ylabel
self.plot_name = plot_name
self.args = args
class Mark:
def __init__(self, fn, benchmarks):
self.fn = fn
self.benchmarks = benchmarks
def _run(self, bench, save_path, show_plots, print_data):
import os
import matplotlib.pyplot as plt
import pandas as pd
y_mean = bench.line_names
y_min = [f'{x}-min' for x in bench.line_names]
y_max = [f'{x}-max' for x in bench.line_names]
df = pd.DataFrame(columns=[bench.x_names[0]] + y_mean + y_min + y_max)
for x in bench.x_vals:
x_args = {x_name: x for x_name in bench.x_names}
row_mean, row_min, row_max = [], [], []
for y in bench.line_vals:
ret = self.fn(**x_args, **{bench.line_arg: y}, **bench.args)
try:
y_mean, y_min, y_max = ret
except TypeError:
y_mean, y_min, y_max = ret, None, None
row_mean += [y_mean]
row_min += [y_min]
row_max += [y_max]
df.loc[len(df)] = [x] + row_mean + row_min + row_max
if bench.plot_name:
plt.figure()
ax = plt.subplot()
x = bench.x_names[0]
for i, y in enumerate(bench.line_names):
y_min, y_max = df[y + '-min'], df[y + '-max']
col = bench.styles[i][0] if bench.styles else None
sty = bench.styles[i][1] if bench.styles else None
ax.plot(df[x], df[y], label=y, color=col, ls=sty)
if y_min is not None and y_max is not None:
ax.fill_between(df[x], y_min, y_max, alpha=0.15, color=col)
ax.legend()
xlabel = bench.xlabel if bench.xlabel else " = ".join(bench.x_names)
ax.set_xlabel(xlabel)
ax.set_ylabel(bench.ylabel)
# ax.set_title(bench.plot_name)
ax.set_xscale("log" if bench.x_log else "linear")
ax.set_yscale("log" if bench.y_log else "linear")
if show_plots:
plt.show()
if save_path:
plt.savefig(os.path.join(save_path, f"{bench.plot_name}.png"))
df = df[[bench.x_names[0]] + bench.line_names]
if print_data:
print(bench.plot_name + ':')
print(df)
if save_path:
df.to_csv(os.path.join(save_path, f"{bench.plot_name}.csv"), float_format='%.1f', index=False)
def run(self, show_plots=False, print_data=False, save_path=''):
has_single_bench = isinstance(self.benchmarks, Benchmark)
benchmarks = [self.benchmarks] if has_single_bench else self.benchmarks
if save_path:
html = open(os.path.join(save_path, "results.html"), "w")
html.write("<html><body>\n")
for bench in benchmarks:
self._run(bench, save_path, show_plots, print_data)
if save_path:
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n")
if save_path:
html.write("</body></html>\n")
def perf_report(benchmarks):
"""
Mark a function for benchmarking. The benchmark can then be executed by using the :code:`.run` method on the return value.
:param benchmarks: Benchmarking configurations.
:type benchmarks: List of :class:`Benchmark`
"""
wrapper = lambda fn: Mark(fn, benchmarks)
return wrapper
def get_dram_gbps(backend=None, device=None):
''' return DRAM bandwidth in GB/s '''
# assert backend == CUDA
if not backend:
backend = _triton.runtime.backend.CUDA
if not device:
device = torch.cuda.current_device()
mem_clock_khz = _triton.runtime.memory_clock_rate(backend, device)
bus_width = _triton.runtime.global_memory_bus_width(backend, device)
bw_gbps = mem_clock_khz * bus_width * 2 // 1024 // 1024 // 8 # In GB/s
return bw_gbps
def get_max_tensorcore_tflops(backend, device):
num_subcores = _triton.runtime.num_sm(backend, device) * 4 # on recent GPUs
clock_rate = _triton.runtime.clock_rate(backend, device) # in kHz
# assume fp32 += fp16*fp16
cc = _triton.runtime.cc(backend, device)
if cc < 80:
ops_per_sub_core = 256 # 2 4x4x4 Tensor Cores
else:
ops_per_sub_core = 512
tflops = num_subcores * clock_rate * ops_per_sub_core / (1024 * 1024 * 1024)
return tflops