74 lines
2.4 KiB
Python
74 lines
2.4 KiB
Python
import os
|
|
import sys
|
|
import re
|
|
import random
|
|
import numpy as np
|
|
from sklearn.neighbors.kde import KernelDensity
|
|
from pyviennacl.atidlas import FetchingPolicy
|
|
|
|
def decode(y):
|
|
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
|
|
y[7] = fetch[y[7]]
|
|
y[8] = fetch[y[8]]
|
|
return y
|
|
|
|
def resample(X, tbincount, densities, step):
|
|
Xtuples = [tuple(x) for x in X]
|
|
r = random.random()
|
|
while(True):
|
|
if(len(tbincount)==0 or len(densities)==0 or r<=1.0/len(densities)):
|
|
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)])
|
|
else:
|
|
probs = [1.0/x if x>0 else 0 for x in tbincount]
|
|
distr = np.random.choice(range(tbincount.size), p = probs/np.sum(probs))
|
|
x = densities[distr].sample()[0]
|
|
x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step
|
|
if tuple(x) not in Xtuples:
|
|
break
|
|
return x.astype(int)
|
|
|
|
def generate_dataset(TemplateType, execution_handler):
|
|
I = 10
|
|
step = 64
|
|
path = "./data"
|
|
|
|
# print "Getting some good profiles..."
|
|
# X = np.empty((I, 3))
|
|
# t = np.empty(I)
|
|
# profiles = []
|
|
# for i in range(I):
|
|
# x = resample(X, [], [], step)
|
|
# y = execution_handler(x)
|
|
# if y not in profiles:
|
|
# profiles.append(y)
|
|
# idx = profiles.index(y)
|
|
# X[i,:] = x
|
|
# t[i] = idx
|
|
# densities = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)];
|
|
#
|
|
# print "Generating the dataset..."
|
|
# N = 1000
|
|
# Y = np.empty((N, len(profiles)))
|
|
# X = np.empty((N,3))
|
|
# t = []
|
|
#
|
|
# for i in range(N):
|
|
# x = resample(X, np.bincount(t), densities, step)
|
|
# for j,y in enumerate(profiles):
|
|
# T = execution_handler(x, os.devnull, decode(map(int, y)))
|
|
# Y[i,j] = 2*1e-9*x[0]*x[1]*x[2]/T
|
|
# idx = np.argmax(Y[i,:])
|
|
# X[i,:] = x
|
|
# t = np.argmax(Y[:i+1,], axis=1)
|
|
# densities[idx].fit(X[t==idx,:])
|
|
#
|
|
# np.savetxt(os.path.join(path,"profiles.csv"), profiles)
|
|
# np.savetxt(os.path.join(path,"X.csv"), X)
|
|
# np.savetxt(os.path.join(path,"Y.csv"), Y)
|
|
|
|
profiles = np.loadtxt(os.path.join(path,"profiles.csv"))
|
|
X = np.loadtxt(os.path.join(path,"X.csv"))
|
|
Y = np.loadtxt(os.path.join(path,"Y.csv"))
|
|
|
|
return X, Y, profiles
|