Files
triton/autotune/python/dataset.py
Philippe Tillet 2f6d41f661 nn?
2014-10-01 04:44:16 +02:00

74 lines
2.4 KiB
Python

import os
import sys
import re
import random
import numpy as np
from sklearn.neighbors.kde import KernelDensity
from pyviennacl.atidlas import FetchingPolicy
def decode(y):
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
y[7] = fetch[y[7]]
y[8] = fetch[y[8]]
return y
def resample(X, tbincount, densities, step):
Xtuples = [tuple(x) for x in X]
r = random.random()
while(True):
if(len(tbincount)==0 or len(densities)==0 or r<=1.0/len(densities)):
x = np.array([step*random.randint(1,40), step*random.randint(1,40), step*random.randint(1,40)])
else:
probs = [1.0/x if x>0 else 0 for x in tbincount]
distr = np.random.choice(range(tbincount.size), p = probs/np.sum(probs))
x = densities[distr].sample()[0]
x = np.maximum(np.ones(x.shape),(x - step/2).astype(int)/step + 1)*step
if tuple(x) not in Xtuples:
break
return x.astype(int)
def generate_dataset(TemplateType, execution_handler):
I = 10
step = 64
path = "./data"
# print "Getting some good profiles..."
# X = np.empty((I, 3))
# t = np.empty(I)
# profiles = []
# for i in range(I):
# x = resample(X, [], [], step)
# y = execution_handler(x)
# if y not in profiles:
# profiles.append(y)
# idx = profiles.index(y)
# X[i,:] = x
# t[i] = idx
# densities = [KernelDensity(kernel='gaussian', bandwidth=2*step).fit(X[t==i,:]) for i in range(int(max(t))+1)];
#
# print "Generating the dataset..."
# N = 1000
# Y = np.empty((N, len(profiles)))
# X = np.empty((N,3))
# t = []
#
# for i in range(N):
# x = resample(X, np.bincount(t), densities, step)
# for j,y in enumerate(profiles):
# T = execution_handler(x, os.devnull, decode(map(int, y)))
# Y[i,j] = 2*1e-9*x[0]*x[1]*x[2]/T
# idx = np.argmax(Y[i,:])
# X[i,:] = x
# t = np.argmax(Y[:i+1,], axis=1)
# densities[idx].fit(X[t==idx,:])
#
# np.savetxt(os.path.join(path,"profiles.csv"), profiles)
# np.savetxt(os.path.join(path,"X.csv"), X)
# np.savetxt(os.path.join(path,"Y.csv"), Y)
profiles = np.loadtxt(os.path.join(path,"profiles.csv"))
X = np.loadtxt(os.path.join(path,"X.csv"))
Y = np.loadtxt(os.path.join(path,"Y.csv"))
return X, Y, profiles