Files
triton/python/src/superblock.cc
Philippe Tillet 2f80a98776 [BUILD] Added automatic nightly build releases to pip in CI; removed build-time dependence on LLVM and PyTorch (#77)
Recently there has been more and more report about installation issues:

    - Installing Triton before upgrading pytorch can create some issues because Triton uses some torch headers

    - llvm-10-dev not available on some platform; llvm-11-dev not available on e.g. Ubuntu.
    absence of nightly builds

This PR should fix all these issues. Some CMake tricks are used to download and install llvm at build time. Triton Python bindings were modified to remove dependence on pytorch ops. Midnight CI job added to generate binary wheels for all Triton version and update them on pypi's new triton-nightly project.

This PR will also make it very easy to use LLVM forks in the future for whatever needs we have.
2021-07-27 12:38:49 -07:00

119 lines
3.7 KiB
C++

#include <iostream>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <string>
#include <tuple>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
// row-major 3d tensor
class tensor_3d {
public:
tensor_3d(int size_0, int size_1, int size_2, int *data = nullptr) : data_(size_0 * size_1 * size_2, 0) {
if (data)
std::copy(data, data + data_.size(), data_.begin());
stride_0_ = size_1 * size_2;
stride_1_ = size_2;
stride_2_ = 1;
}
int &operator()(int i, int j, int k) {
return data_[i * stride_0_ + j * stride_1_ + k];
}
private:
std::vector<int> data_;
int stride_0_;
int stride_1_;
int stride_2_;
};
std::vector<int> segment_blocks(tensor_3d &layout, tensor_3d &idx, int max_width, int H, int M, int N) {
tensor_3d tmp(H, M, N);
std::vector<int> current(H, 0);
int num = 0;
std::vector<int> lut(H * M * N * 4);
for (size_t h = 0; h < H; h++) {
// surrounding indices
std::vector<int> ii_left(max_width, -1);
std::vector<std::vector<int>> ii_top(max_width, std::vector<int>(N, -1));
// start the dynamic programming algorithm
for (size_t m = 0; m < M; m++) {
for (size_t n = 0; n < N; n++) {
int v = layout(h, m, n);
if (v == 0)
continue;
int n_left = ii_left[max_width - 1];
int m_top = ii_top[max_width - 1][n];
int top = (m_top >= 0) ? tmp(h, m_top, n) : 0;
int left = (n_left >= 0) ? tmp(h, m, n_left) : 0;
int topleft = (m_top >= 0 && n_left >= 0) ? tmp(h, m_top, n_left) : 0;
int width = std::min(left, std::min(top, topleft)) + 1;
// reset width if blocks cannot be
// packed together (i.e., there's a 1 "in the middle")
for (int nn = n_left + 1; nn < n; nn++)
if (ii_top[max_width - 1][nn] > ii_top[max_width - 1][n])
width = 1;
tmp(h, m, n) = width;
// update n_left ring buffer
for (int k = 0; k < max_width - 1; k++)
ii_left[k] = ii_left[k + 1];
ii_left[max_width - 1] = n;
// update ii_top ring buffer
for (int k = 0; k < max_width - 1; k++)
ii_top[k][n] = ii_top[k + 1][n];
ii_top[max_width - 1][n] = m;
// block is too small -- skip
if (width != max_width)
continue;
// retained blocks are set to zeros
for (size_t km = 0; km < max_width; km++)
for (size_t kn = 0; kn < max_width; kn++) {
int mm = ii_top[km][n];
int nn = ii_left[kn];
if (mm < 0 || nn < 0)
continue;
layout(h, mm, nn) = 0;
tmp(h, mm, nn) = 0;
lut[num++] = (int)h;
lut[num++] = (int)mm;
lut[num++] = (int)nn;
lut[num++] = idx(h, mm, nn);
}
}
}
}
lut.resize(num);
return lut;
}
typedef std::pair<int, pybind11::array_t<int>> lut_t;
std::vector<lut_t> superblock(uintptr_t LAYOUT, int H, int M, int N, int start_width) {
std::vector<lut_t> ret;
int current = 0;
tensor_3d layout(H, M, N, (int *)LAYOUT);
tensor_3d idx(H, M, N);
for (int64_t h = 0; h < H; h++)
for (int64_t m = 0; m < M; m++)
for (int64_t n = 0; n < N; n++) {
if (layout(h, m, n) == 0)
continue;
idx(h, m, n) = current++;
}
// create lut
for (int max_width = start_width; max_width > 0; max_width /= 2) {
auto lut = segment_blocks(layout, idx, max_width, H, M, N);
if (lut.size() == 0)
continue;
ret.push_back(std::make_pair(max_width, pybind11::array_t<int>(lut.size(), lut.data())));
}
return ret;
}
void init_superblocking(pybind11::module &m) {
m.def("superblock", &superblock, "super-blocking for block-sparse matrix multiplication");
}