Files
triton/python/test/test_blocksparse.py
Philippe Tillet 2f80a98776 [BUILD] Added automatic nightly build releases to pip in CI; removed build-time dependence on LLVM and PyTorch (#77)
Recently there has been more and more report about installation issues:

    - Installing Triton before upgrading pytorch can create some issues because Triton uses some torch headers

    - llvm-10-dev not available on some platform; llvm-11-dev not available on e.g. Ubuntu.
    absence of nightly builds

This PR should fix all these issues. Some CMake tricks are used to download and install llvm at build time. Triton Python bindings were modified to remove dependence on pytorch ops. Midnight CI job added to generate binary wheels for all Triton version and update them on pypi's new triton-nightly project.

This PR will also make it very easy to use LLVM forks in the future for whatever needs we have.
2021-07-27 12:38:49 -07:00

161 lines
5.7 KiB
Python

import torch
import triton
import pytest
@pytest.mark.parametrize(
"MODE, TRANS_A, TRANS_B, BLOCK, DTYPE",
[
(mode, at, bt, block, dtype) for dtype in ["float16", "float32"] for mode in ["sdd", "dsd", "dds"]
for at in [False, True] for bt in [False, True] for block in [16, 32, 64]
],
)
def test_matmul(MODE, TRANS_A, TRANS_B, BLOCK, DTYPE, Z=3, H=2, M=512, N=384, K=256):
DTYPE = {"float16": torch.float16, "float32": torch.float32}[DTYPE]
# set seed
torch.random.manual_seed(0)
# create inputs
a = torch.randn((Z, H, K, M) if TRANS_A else (Z, H, M, K), dtype=DTYPE, device="cuda")
b = torch.randn((Z, H, N, K) if TRANS_B else (Z, H, K, N), dtype=DTYPE, device="cuda")
shape = {
"sdd": (M, N),
"dsd": (a.shape[2], a.shape[3]),
"dds": (b.shape[2], b.shape[3]),
}[MODE]
layout = torch.randint(2, (H, shape[0] // BLOCK, shape[1] // BLOCK))
# triton result
op = triton.ops.blocksparse.matmul(layout, BLOCK, MODE, trans_a=TRANS_A, trans_b=TRANS_B)
ra = triton.testing.sparsify_tensor(a, layout, BLOCK) if MODE == "dsd" else a
rb = triton.testing.sparsify_tensor(b, layout, BLOCK) if MODE == "dds" else b
rc = op(ra, rb)
# torch result
ta = triton.testing.mask_tensor(a, layout, BLOCK) if MODE == "dsd" else a
tb = triton.testing.mask_tensor(b, layout, BLOCK) if MODE == "dds" else b
ta = ta.transpose(2, 3) if TRANS_A else ta
tb = tb.transpose(2, 3) if TRANS_B else tb
tc = torch.matmul(ta, tb)
tc = triton.testing.mask_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc
tc = triton.testing.sparsify_tensor(tc, layout, BLOCK) if MODE == "sdd" else tc
# compare
assert triton.testing.allclose(rc, tc)
@pytest.mark.parametrize(
"BLOCK, WIDTH",
[(block, width) for block in [32] for width in [256, 576, 1024, 1792]],
)
def test_softmax(BLOCK, WIDTH, DTYPE=torch.float16):
# set seed
torch.random.manual_seed(0)
Z, H, M, N = 2, 4, WIDTH, WIDTH
scale = 0.4
# create inputs
layout = torch.randint(2, (H, M // BLOCK, N // BLOCK))
x = torch.randn((Z, H, M, N), dtype=DTYPE, requires_grad=True, device="cuda")
at_mask = torch.randint(low=0, high=2, size=(N, N), dtype=torch.bool, requires_grad=False, device="cuda")
kp_mask = torch.randint(low=0, high=2, size=(Z, N), dtype=DTYPE, requires_grad=False, device="cuda")
kp_mask[kp_mask == 1.0] = float("-inf")
# triton result
op = triton.ops.blocksparse.softmax(layout, BLOCK)
tx = triton.testing.sparsify_tensor(x, layout, BLOCK)
ty = op(
tx,
scale=scale,
key_padding_mask=kp_mask,
key_padding_mask_mode="add",
attn_mask=at_mask.to(DTYPE),
attn_mask_mode="mul",
)
# torch result
rx = triton.testing.mask_tensor(x, layout, BLOCK, value=float("-inf"))
if at_mask is not None:
# broadcast at_mask to the same shape as rx
M = at_mask[None, None, :, :] + torch.zeros_like(rx)
rx[M == 0] = float("-inf")
if kp_mask is not None:
rx += kp_mask[:, None, None, :]
ry = torch.softmax(rx * scale, -1)
ry = torch.softmax(rx * scale, -1)
ry = triton.testing.sparsify_tensor(ry, layout, BLOCK)
# compare
assert triton.testing.allclose(ry, ty)
def test_attention_fwd_bwd(
input_scale=1.0,
tol=2e-2,
scale=1 / 8.0,
n_ctx=256,
dtype=torch.float16,
batch_size=2,
n_heads=2,
block=64,
):
# inputs
qkv_shape = (batch_size, n_heads, n_ctx, 64)
qkvs = [torch.nn.Parameter(input_scale * torch.randn(qkv_shape), requires_grad=True).to(dtype).cuda() for _ in range(3)]
attn_mask = torch.tril(
torch.ones(
[n_ctx, n_ctx],
device="cuda",
dtype=dtype,
),
diagonal=0,
)
# Triton:
n_blocks = n_ctx // block
layout = torch.tril(torch.ones([n_heads, n_blocks, n_blocks], dtype=torch.long))
query, key, value = [x.clone() for x in qkvs]
query.retain_grad()
key.retain_grad()
value.retain_grad()
attn_out = triton_attention(layout, block, attn_mask, query=query, key=key, value=value, scale=scale)
# ad hoc loss
loss = (attn_out**2).mean()
loss.backward()
grads = [query.grad, key.grad, value.grad]
# Torch version:
torch_q, torch_k, torch_v = [x.clone() for x in qkvs]
attn_mask = 1e6 * (-1 + (attn_mask.reshape((1, 1, n_ctx, n_ctx)).cuda()))
torch_q.retain_grad()
torch_k.retain_grad()
torch_v.retain_grad()
scores = scale * torch.einsum("bhsd,bhtd->bhst", torch_q, torch_k)
scores = scores + attn_mask
probs = torch.softmax(scores, dim=-1)
torch_attn_out = torch.einsum("bhst,bhtd->bhsd", probs, torch_v)
# ad hoc loss
torch_loss = (torch_attn_out**2).mean()
torch_loss.backward()
torch_grads = [torch_q.grad, torch_k.grad, torch_v.grad]
# comparison
# print(f"Triton loss {loss} and torch loss {torch_loss}. Also checking grads...")
torch.testing.assert_allclose(loss, torch_loss, rtol=tol, atol=tol)
for g1, g2 in zip(grads, torch_grads):
torch.testing.assert_allclose(g1, g2, rtol=tol, atol=tol)
def triton_attention(
layout,
block: int,
attn_mask: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
):
sparse_dot_sdd_nt = triton.ops.blocksparse.matmul(layout, block, "sdd", trans_a=False, trans_b=True)
sparse_dot_dsd_nn = triton.ops.blocksparse.matmul(layout, block, "dsd", trans_a=False, trans_b=False)
sparse_softmax = triton.ops.blocksparse.softmax(
layout,
block,
)
w = sparse_dot_sdd_nt(query, key)
w = sparse_softmax(w, scale=scale, attn_mask=attn_mask, attn_mask_mode="mul")
a = sparse_dot_dsd_nn(w, value)
return a