Files
triton/python/autotune/autotune.py
2014-10-15 05:24:19 -04:00

174 lines
10 KiB
Python

from __future__ import division
import argparse
import itertools
import os
import pyopencl as cl
import pyviennacl as vcl
import pyatidlas as atd
import tools
import optimize
import sys
from configobj import ConfigObj
from numpy import random
from dataset import generate_dataset
from model import train_model
DATATYPES = { 'single' : vcl.float32,
'double' : vcl.float64 }
TYPES = { 'vector-axpy': {'template':atd.VectorAxpyTemplate,
'perf-index':lambda x: 3*x[0]*x[1][0]/x[2]*1e-9,
'perf-measure':'GB/s'},
'matrix-axpy': {'template':atd.MatrixAxpyTemplate,
'perf-index':lambda x: 3*x[0]*x[1][0]*x[1][1]/x[2]*1e-9,
'perf-measure':'GB/s'},
'reduction': {'template':atd.ReductionTemplate,
'perf-index':lambda x: 2*x[0]*x[1][0]/x[2]*1e-9,
'perf-measure':'GB/s'},
'row-wise-reduction': {'template':atd.RowWiseReductionTemplate,
'perf-index':lambda x: x[0]*x[1][0]*x[1][1]/x[2]*1e-9,
'perf-measure':'GB/s'},
'matrix-product': {'template': atd.MatrixProductTemplate,
'perf-index': lambda x: 2*x[1][0]*x[1][1]*x[1][2]/x[2]*1e-9,
'perf-measure': 'GFLOP/s'} }
def do_tuning(config_fname, viennacl_root):
config = ConfigObj(config_fname)
def map_to_list(T, x):
return list(map(T, x if isinstance(x, list) else [x]))
for operation in ['vector-axpy', 'matrix-axpy', 'reduction', 'row-wise-reduction', 'matrix-product']:
if operation in config:
p = config[operation]
confdevices = p['devices']
all_devices = [d for platform in cl.get_platforms() for d in platform.get_devices()]
DEVICES_PRESETS = {'all': all_devices,
'gpus': [d for d in all_devices if d.type==cl.device_type.GPU],
'cpus': [d for d in all_devices if d.type==cl.device_type.CPU],
'accelerators': [d for d in all_devices if d.type==cl.device_type.ACCELERATOR]
}
devices = DEVICES_PRESETS[confdevices] if confdevices in DEVICES_PRESETS else [all_devices[int(i)] for i in confdevices]
precisions = map_to_list(str, p['precision'])
if 'all' in precisions:
precisions = ['single','double']
datatypes = [DATATYPES[k] for k in precisions]
#Iterate through the datatypes and the devices
for datatype, device in itertools.product(datatypes, devices):
ctx = cl.Context([device])
ctx = vcl.backend.Context(ctx)
device = ctx.current_device
#Check data-type
if datatype is vcl.float64 and not device.double_fp_config:
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
continue
#Helper for execution
def execute(device, node, other_params, sizes, fname = os.devnull, parameters = None):
with vcl.Statement(node) as statement:
if parameters:
TemplateType = TYPES[operation]['template']
return tools.benchmark(TemplateType(TemplateType.Parameters(*parameters),*other_params), statement, device)
print('-----')
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')] for sizes', sizes))))
with open(fname, "w+") as archive:
return optimize.genetic(statement, device, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
#Helper for tuning
def tune(execution_handler, nTuning, nDataPoints, draw, additional_parameters):
if 'size' in p:
profile = execution_handler(map_to_list(int, p['size']))
if 'viennacl-src-root' in config:
tools.update_viennacl_headers(config['viennacl-src-root'],device,datatype,operation,additional_parameters,profile)
else:
def compute_perf(x, t):
return TYPES[operation]['perf-index']([datatype().itemsize, x, t])
X, Y, profiles = generate_dataset(TYPES[operation]['template'], execution_handler, nTuning, nDataPoints, draw)
train_model(X, Y, profiles, TYPES[operation]['perf-measure'])
#Vector AXPY
if operation=='vector-axpy':
def execution_handler(sizes, fname=os.devnull, parameters=None):
x = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
z = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
return execute(device, vcl.Assign(z, vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y))), (), sizes, fname, parameters)
tune(execution_handler, 30, 1000, lambda : 64*np.random.randint(low=10, high=100000, size=1), ())
#Reduction
if operation=='reduction':
def execution_handler(sizes, fname=os.devnull, parameters=None):
x = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
s = vcl.Scalar(0, context=ctx, dtype=datatype)
return execute(device, vcl.Assign(s, vcl.Dot(x,y)), (), sizes, fname, parameters)
tune(execution_handler, 50, 1000, lambda : 64*np.random.randint(low=10, high=100000, size=1), ())
#Matrix AXPY
if operation=='matrix-axpy':
def execution_handler(sizes, fname=os.devnull, parameters=None):
A = vcl.Matrix(sizes, context=ctx, dtype=datatype)
B = vcl.Matrix(sizes, context=ctx, dtype=datatype)
C = vcl.Matrix(sizes, context=ctx, dtype=datatype)
return execute(device, vcl.Assign(C,A+B), (), sizes, fname, parameters)
tune(execution_handler, 50, 1000, lambda : 64*np.random.randint(low=5, high=100, size=2), ())
#Row-wise reduction
if operation=='row-wise-reduction':
layouts = map_to_list(str,p['layout'])
if 'all' in layouts:
layouts = ['N', 'T']
for A_trans in layouts:
def execution_handler(sizes, fname=os.devnull, parameters=None):
A = vcl.Matrix(sizes if A_trans=='N' else sizes[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
x = vcl.Vector(sizes[1] if A_trans=='N' else sizes[0], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0] if A_trans=='N' else sizes[1], context=ctx, dtype=datatype)
LHS = A if A_trans=='N' else A.T
return execute(device, vcl.Assign(y, LHS*x), (), sizes, fname, parameters)
tune(execution_handler, 50, 1000, lambda : 64*np.random.randint(low=5, high=100, size=2), (A_trans,))
#Matrix Product
if operation=='matrix-product':
layouts = map_to_list(str,p['layout'])
if 'all' in layouts:
layouts = ['NN', 'NT', 'TN', 'TT']
for layout in layouts:
def execution_handler(sizes, fname=os.devnull, parameters=None):
A_trans = layout[0]
B_trans = layout[1]
A = vcl.Matrix((sizes[0], sizes[1]) if A_trans=='N' else (sizes[1],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
B = vcl.Matrix((sizes[1], sizes[2]) if B_trans=='N' else (sizes[2],sizes[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
LHS = A if A_trans=='N' else A.T
RHS = B if B_trans=='N' else B.T
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
return execute(device, vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans), sizes, fname, parameters)
tune(execution_handler, 50, 2000, lambda : 64*np.random.randint(low=1, high=40, size=3),(layout[0], layout[1]))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='action')
print_devices_parser = subparsers.add_parser('list-devices', help='list the devices available')
tune_parser = subparsers.add_parser('tune', help='tune using a specific configuration file')
tune_parser.add_argument("--config", default="config.ini", required=False, type=str)
tune_parser.add_argument("--viennacl-root", default='', required=False, type=str)
args = parser.parse_args()
if(args.action=='list-devices'):
print("----------------")
print("Devices available:")
print("----------------")
devices = [d for platform in cl.get_platforms() for d in platform.get_devices()]
for (i, d) in enumerate(devices):
print 'Device', i, '|', cl.device_type.to_string(d.type), '|', d.name, 'on', d.platform.name
print("----------------")
else:
print("------")
print("Auto-tuning")
print("------")
do_tuning(args.config, args.viennacl_root)