Files
triton/autotune/python/model.py
2014-09-30 10:11:22 +02:00

43 lines
1.5 KiB
Python

from sklearn import *;
from sklearn import ensemble;
import numpy as np
import scipy as sp
def train_model(X, Y, profiles):
#Preprocessing
scaler = preprocessing.StandardScaler().fit(X);
X = scaler.transform(X);
ref = np.argmax(np.bincount(np.argmax(Y, axis=1))) #most common profile
#Cross-validation data-sets
cut = int(0.5*X.shape[0]+1);
XTr = X[0:cut, :];
YTr = Y[0:cut, :];
XTe = X[cut:,:];
YTe = Y[cut:,:];
#Train the model
print("Training the model...");
clf = linear_model.LinearRegression().fit(XTr,YTr);
#Evaluate the model
GFlops = np.empty(XTe.shape[0]);
speedups = np.empty(XTe.shape[0]);
optspeedups = np.empty(XTe.shape[0]);
for i,x in enumerate(XTe):
predictions = clf.predict(x);
label = np.argmax(predictions);
speedups[i] = YTe[i,label]/YTe[i,ref];
optspeedups[i] = np.max(YTe[i,:])/YTe[i,ref];
GFlops[i] = YTe[i,ref];
np.set_printoptions(precision=2);
print("-----------------");
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)));
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))));
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]));
print("Maximum speedup is %f wrt %i GFlops"%(np.max(speedups), GFlops[np.argmax(speedups)]));
print("--------");
print clf