Files
triton/python/test/test_matmul.py
Philippe Tillet 39f4730305 Deprecation of Triton-C and Replacement by decorated Python functions (#86)
This PR implements a major overhaul of the frontend for Triton, and replaces Triton-C by a pure Python API in which kernels are defined as @triton.jit decorated functions. The documentation and tutorials have also been updated to accommodate these changes.

See documentations for more information on the new API
2021-07-27 12:38:49 -07:00

77 lines
3.7 KiB
Python

import pytest
import itertools
import triton
import torch
@pytest.mark.parametrize(
"BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, NWARP, M, N, K, AT, BT, DTYPE",
itertools.chain(
*[
[
# 1 warp
(16, 16, 16, 1, 1, None, None, None, AT, BT, DTYPE),
(32, 16, 16, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 32, 16, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 16, 32, 1, 1, None, None, None, AT, BT, DTYPE),
(32, 16, 32, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 32, 32, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 16, 64, 1, 1, None, None, None, AT, BT, DTYPE),
(64, 16, 64, 1, 1, None, None, None, AT, BT, DTYPE),
(16, 64, 64, 1, 1, None, None, None, AT, BT, DTYPE),
# 2 warp
(64, 32, 64, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 64, 64, 1, 2, None, None, None, AT, BT, DTYPE),
(64, 32, 16, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 64, 16, 1, 2, None, None, None, AT, BT, DTYPE),
(128, 32, 32, 1, 2, None, None, None, AT, BT, DTYPE),
(32, 128, 32, 1, 2, None, None, None, AT, BT, DTYPE),
# 4 warp
(128, 64, 16, 1, 4, None, None, None, AT, BT, DTYPE),
(64, 128, 16, 1, 4, None, None, None, AT, BT, DTYPE),
(128, 32, 32, 1, 4, None, None, None, AT, BT, DTYPE),
(32, 128, 32, 1, 4, None, None, None, AT, BT, DTYPE),
(128, 32, 64, 1, 4, None, None, None, AT, BT, DTYPE),
(32, 128, 64, 1, 4, None, None, None, AT, BT, DTYPE),
# 8 warp
(128, 256, 16, 1, 8, None, None, None, AT, BT, DTYPE),
(256, 128, 16, 1, 8, None, None, None, AT, BT, DTYPE),
(256, 128, 32, 1, 8, None, None, None, AT, BT, DTYPE),
# # split-k
(64, 64, 16, 2, 4, None, None, None, AT, BT, DTYPE),
(64, 64, 16, 4, 4, None, None, None, AT, BT, DTYPE),
(64, 64, 16, 8, 4, None, None, None, AT, BT, DTYPE),
# # variable input
(128, 128, 32, 1, 4, 1024, 1024, 1024, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 384, 128, 640, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 107, 233, 256, AT, BT, DTYPE),
(128, 128, 32, 1, 4, 107, 233, 311, AT, BT, DTYPE),
] for DTYPE in ["float16", "float32"] for AT in [False, True] for BT in [False, True]
]
),
)
def test_op(BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, NWARP, M, N, K, AT, BT, DTYPE):
torch.manual_seed(0)
# nuke kernel decorators -- will set meta-parameters manually
META = {'BLOCK_M': BLOCK_M, 'BLOCK_N': BLOCK_N, 'BLOCK_K': BLOCK_K, 'SPLIT_K': SPLIT_K, 'GROUP_M': 8}
configs = [triton.Config(meta=META, num_warps=NWARP)]
kernel = triton.ops._matmul.kernel
decorators = kernel.kernel_decorators
kernel.kernel_decorators = []
triton.autotune(configs, [])(kernel)
kernel.kernel_decorators += decorators[1:]
# get matrix shape
M = BLOCK_M if M is None else M
N = BLOCK_N if N is None else N
K = BLOCK_K * SPLIT_K if K is None else K
# allocate/transpose inputs
DTYPE = {"float16": torch.float16, "float32": torch.float32}[DTYPE]
a = torch.randn((K, M) if AT else (M, K), device="cuda", dtype=DTYPE)
b = torch.randn((N, K) if BT else (K, N), device="cuda", dtype=DTYPE)
a = a.t() if AT else a
b = b.t() if BT else b
# run test
th_c = torch.matmul(a, b)
tt_c = triton.ops.matmul(a, b)
assert triton.testing.allclose(th_c, tt_c)