Files
triton/examples/matrix.cpp
2019-02-10 18:29:25 -05:00

256 lines
8.4 KiB
C++

#include <cstring>
#include <cstdio>
#include "cuda.h"
#include "ast/ast.h"
#include "ir/context.h"
#include "ir/module.h"
#include "codegen/selection.h"
#include "codegen/tune.h"
#include "codegen/shared_copy.h"
#include "codegen/allocation.h"
#include "codegen/liveness.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Transforms/Scalar/EarlyCSE.h"
typedef struct yy_buffer_state * YY_BUFFER_STATE;
extern int yyparse();
extern YY_BUFFER_STATE yy_scan_string(const char * str);
extern void yy_delete_buffer(YY_BUFFER_STATE buffer);
using tdl::ast::translation_unit;
extern translation_unit *ast_root;
const char src[] =
"\
void test(fp32 *a, fp32 *b, fp32 *c, int32 M, int32 N, int32 K){\
int32 rxa[16] = get_global_range[16](0);\
int32 ryb[16] = get_global_range[16](1);\
int32 rka[8] = 0 ... 8;\
int32 rkb[8] = 0 ... 8;\
int32 rxc[16] = get_global_range[16](0);\
int32 ryc[16] = get_global_range[16](1);\
fp32 C[16, 16] = 0;\
int32 k;\
fp32* pa[16, 8] = a + rxa[:, newaxis] + rka[newaxis, :]*M;\
fp32* pb[16, 8] = b + ryb[:, newaxis] + rkb[newaxis, :]*K;\
fp32* pc[16, 16] = c + rxc[:, newaxis] + ryc[newaxis, :]*M;\
for(k = K; k > 0; k = k - 8){\
fp32 a[16, 8] = *pa;\
fp32 b[16, 8] = *pb;\
C = dot(a, b, C);\
pa = pa + 8*M;\
pb = pb + 8*K;\
}\
*pc = C;\
}\
";
static std::string compute_data_layout(bool is64Bit, bool UseShortPointers) {
std::string Ret = "e";
if (!is64Bit)
Ret += "-p:32:32";
else if (UseShortPointers)
Ret += "-p3:32:32-p4:32:32-p5:32:32";
Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
return Ret;
}
static std::string generate_machine_code(llvm::Module &module, const std::string &target_triple, const std::string &data_layout) {
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargets();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllAsmPrinters();
module.setTargetTriple(target_triple);
std::string error;
auto target = llvm::TargetRegistry::lookupTarget(module.getTargetTriple(), error);
llvm::TargetMachine *machine = target->createTargetMachine(module.getTargetTriple(), "sm_52", "",
llvm::TargetOptions(), llvm::Reloc::Model(),
llvm::None, llvm::CodeGenOpt::Aggressive);
module.setDataLayout(data_layout);
// emit machine code
llvm::legacy::PassManager pass;
llvm::SmallVector<char, 0> buffer;
llvm::raw_svector_ostream stream(buffer);
machine->addPassesToEmitFile(pass, stream, nullptr, llvm::TargetMachine::CGFT_AssemblyFile);
pass.run(module);
std::string src(buffer.begin(), buffer.end());
return src;
}
static void __checkCudaErrors( CUresult err, const char *file, const int line )
{
if( CUDA_SUCCESS != err) {
fprintf(stderr,
"CUDA Driver API error = %04d from file <%s>, line %i.\n",
err, file, line );
exit(-1);
}
}
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
static void compile_machine_code(CUdevice &device, CUcontext &context, CUmodule &module,
CUfunction &function, CUstream &stream, int &major, int &minor,
const std::string &src, const std::string &name) {
int numDevices;
// Initialize
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&numDevices));
checkCudaErrors(cuDeviceGet(&device, 0));
checkCudaErrors(cuDeviceComputeCapability(&major, &minor, device));
checkCudaErrors(cuCtxCreate(&context, 0, device));
checkCudaErrors(cuStreamCreate(&stream, 0));
// Compile program
CUjit_option opt[] = {CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES, CU_JIT_ERROR_LOG_BUFFER};
unsigned int errbufsize = 8096;
std::string errbuf(errbufsize, 0);
const void *cpterr = static_cast<const void*>(errbuf.data());
void *pterr = const_cast<void*>(cpterr);
void* optval[] = {(void*)(uintptr_t)errbufsize, pterr};
int err = cuModuleLoadDataEx(&module, src.data(), 2, opt, optval);
if(err != CUDA_SUCCESS){
std::cerr << "Compilation Failed! Log: " << std::endl;
std::cerr << errbuf << std::endl;
}
// Get function
checkCudaErrors(cuModuleGetFunction(&function, module, name.c_str()));
}
template<class T>
void simple_gemm(std::vector<T> &c, const std::vector<T> &a, const std::vector<T> &b, size_t M, size_t N, size_t K){
for(size_t m = 0; m < M; m++)
for(size_t n = 0; n < N; n++){
T acc = 0;
for(size_t k = 0; k < K; k++)
acc += a[m + k*M] * b[n + k*N];
c[m + n*M] = acc;
}
}
int main() {
// create AST from Triton-C source
YY_BUFFER_STATE buffer = yy_scan_string(src);
yyparse();
yy_delete_buffer(buffer);
translation_unit *program = ast_root;
// create Triton-IR from AST
tdl::ir::context context;
tdl::ir::module module("matrix", context);
program->codegen(&module);
llvm::LLVMContext llvm_context;
llvm::Module llvm_module("test", llvm_context);
// create passes
tdl::codegen::place_shared_copy shared;
tdl::codegen::tune tune;
tdl::codegen::liveness liveness;
tdl::codegen::allocation allocation(&liveness);
tdl::codegen::selection selection(&allocation, &tune);
// tuning parameters
tune.run(module);
std::vector<unsigned> params = {
// a0
2, 8, 1,
// b0
4, 4, 1,
// c0
2, 8, 1,
// c1
4, 4, 1,
// a1
2, 4, 1,
// b1
1, 8, 1
};
std::map<tdl::ir::value*, std::vector<std::string>> errors;
unsigned i = 0;
std::cout << tune.get_params(module).size() << std::endl;
for(unsigned *x: tune.get_params(module))
*x = params[i++];
tune.check_constraints(module, errors);
std::cout << "errors: " << errors.size() << std::endl;
for(auto &x: errors){
for(auto &e: x.second)
std::cout << e << std::endl;
}
// run passes
shared.run(module);
liveness.run(module);
allocation.run();
selection.run(module, llvm_module);
// llvm source
llvm::PrintModulePass print(llvm::outs());
llvm::AnalysisManager<llvm::Module> analysis;
print.run(llvm_module, analysis);
// generate machine code
std::string src = generate_machine_code(llvm_module, "nvptx64-nvidia-cuda", compute_data_layout(true, true));
// std::cout << src << std::endl;
// compile machine code
CUdevice cu_device;
CUcontext cu_context;
CUmodule cu_module;
CUfunction cu_kernel;
CUstream cu_stream;
int major, minor;
compile_machine_code(cu_device, cu_context, cu_module, cu_kernel, cu_stream, major, minor, src, "test");
std::cout << src << std::endl;
// execute machine code
// Allocate buffers
typedef float numeric_t;
size_t M = 32, N = 32, K = 32;
std::vector<numeric_t> c(M*N);
std::vector<numeric_t> rc(M*N);
std::vector<numeric_t> a(M*K);
std::vector<numeric_t> b(K*N);
for(size_t i = 0; i < a.size(); i++)
a[i] = (float)rand() / RAND_MAX;
for(size_t i = 0; i < b.size(); i++)
b[i] = (float)rand() / RAND_MAX;
for(size_t i = 0; i < c.size(); i++)
c[i] = 0;
CUdeviceptr d_a, d_b, d_c;
checkCudaErrors(cuMemAlloc(&d_a, sizeof(numeric_t) * a.size()));
checkCudaErrors(cuMemAlloc(&d_b, sizeof(numeric_t) * b.size()));
checkCudaErrors(cuMemAlloc(&d_c, sizeof(numeric_t) * c.size()));
// Copy buffers
checkCudaErrors(cuMemcpyHtoD(d_a, a.data(), sizeof(numeric_t) * a.size()));
checkCudaErrors(cuMemcpyHtoD(d_b, b.data(), sizeof(numeric_t) * b.size()));
checkCudaErrors(cuMemcpyHtoD(d_c, c.data(), sizeof(numeric_t) * c.size()));
// Launch kernel
void *args[] = { &d_a, &d_b, &d_c, &M, &N, &K};
int num_regs;
cuFuncGetAttribute(&num_regs, CU_FUNC_ATTRIBUTE_NUM_REGS, cu_kernel);
unsigned TM = 16;
unsigned TN = 16;
unsigned nthreads = 32;
checkCudaErrors(cuLaunchKernel(cu_kernel, M/TM, N/TN, 1, nthreads, 1, 1, 0, cu_stream, args, NULL));
checkCudaErrors(cuStreamSynchronize(cu_stream));
// Write back
checkCudaErrors(cuMemcpyDtoH(c.data(), d_c, sizeof(numeric_t) * c.size()));
simple_gemm(rc, a, b, M, N, K);
for(size_t i = 0; i < M*N; i++)
if(std::abs(c[i] - rc[i])/std::max(c[i], rc[i]) > 1e-4)
std::cout << i << " " << c[i] << " " << rc[i] << std::endl;
}