Files
triton/test/Conversion/tritongpu_to_llvm.mlir
Shintaro Iwasaki 43be75ad42 [FRONTEND] Add scalar type support for some ops (#661)
This PR adds basic support for scalar-type inputs to some ops (cast and pointer arithmetics) for Triton-MLIR. Also renames getelementptr -> addptr
2022-09-15 16:12:52 -07:00

227 lines
8.8 KiB
MLIR

// RUN: triton-opt %s -split-input-file --convert-triton-gpu-to-llvm | FileCheck %s
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK: llvm.func @test_empty_kernel(%arg0: i32, %arg1: !llvm.ptr<f16, 1>)
// Here the 128 comes from the 4 in module attribute multiples 32
// CHECK: attributes {nvvm.kernel = 1 : ui1, nvvm.maxntid = 128 : si32} {{.*}}
func @test_empty_kernel(%lb : index, %A : !tt.ptr<f16>) {
// CHECK: llvm.return
return
}
} // end module
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: basic_load
func @basic_load(%a_ptr_init : tensor<256x!tt.ptr<f32>, #blocked0>, %cst : tensor<256xi1, #blocked0>, %cst_0 : tensor<256xf32, #blocked0>) {
// CHECK: llvm.inline_asm
// CHECK: llvm.inline_asm
%1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [2], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: vectorized_load
func @vectorized_load(%a_ptr_init : tensor<256x!tt.ptr<f32>, #blocked0>, %cst : tensor<256xi1, #blocked0>, %cst_0 : tensor<256xf32, #blocked0>) {
// CHECK: llvm.inline_asm
// CHECK-SAME: ld.global.b32
// CHECK: llvm.inline_asm
// CHECK-SAME: ld.global.b32
%1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [8], threadsPerWarp = [32], warpsPerCTA = [1], order = [0]}>
module attributes {"triton_gpu.num-warps" = 1 : i32} {
// CHECK-LABEL: vectorized_load_f16
func @vectorized_load_f16(%a_ptr_init: tensor<256x!tt.ptr<f16>, #blocked0>, %cst : tensor<256xi1, #blocked0>, %cst_0 : tensor<256xf16, #blocked0>) {
// CHECK: llvm.inline_asm
// CHECK-SAME: ld.global.b16
// CHECK: llvm.inline_asm
// CHECK-SAME: ld.global.b16
%1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf16, #blocked0>
return
}
}
// -----
// TODO: Pending on the support of isSplat constant
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [8], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: masked_load_const_other
func @masked_load_const_other(%a_ptr_init : tensor<256x!tt.ptr<f32>, #blocked0>, %cst : tensor<256xi1, #blocked0>) {
%cst_0 = arith.constant dense<0.000000e+00> : tensor<256xf32, #blocked0>
%1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>
module attributes {"triton_gpu.num-warps" = 2 : i32} {
// CHECK-LABEL: kernel__Pfp32_Pfp32_Pfp32_i32__3c256
func @kernel__Pfp32_Pfp32_Pfp32_i32__3c256(%arg0: !tt.ptr<f32> {tt.divisibility = 4 : i32}, %arg1: !tt.ptr<f32> {tt.divisibility = 4 : i32}, %arg2: !tt.ptr<f32> {tt.divisibility = 4 : i32}, %arg3: i32) {
%c256_i32 = arith.constant 256 : i32
%0 = tt.get_program_id {axis = 0 : i32} : i32
%1 = arith.muli %0, %c256_i32 : i32
%2 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #blocked0>
%3 = tt.splat %1 : (i32) -> tensor<256xi32, #blocked0>
%4 = arith.addi %3, %2 : tensor<256xi32, #blocked0>
%5 = tt.splat %arg0 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #blocked0>
%6 = tt.addptr %5, %4 : tensor<256x!tt.ptr<f32>, #blocked0>
%7 = tt.splat %arg1 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #blocked0>
%8 = tt.addptr %7, %4 : tensor<256x!tt.ptr<f32>, #blocked0>
// CHECK: ld.global.v4.b32
%9 = tt.load %6 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
// CHECK: ld.global.v4.b32
%10 = tt.load %8 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
%11 = arith.addf %9, %10 : tensor<256xf32, #blocked0>
%12 = tt.splat %arg2 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #blocked0>
%13 = tt.addptr %12, %4 : tensor<256x!tt.ptr<f32>, #blocked0>
// Store 4 elements to global
// CHECK: st.global.b32.v4
tt.store %13, %11 : tensor<256xf32, #blocked0>
return
}
}
// TODO: Add a testcase to verify the optimization when ptr of the LoadOp
// is from an addptr with const idx
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
#blocked2 = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [32, 1], warpsPerCTA = [4, 1], order = [0, 1]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: basic_view_broadcast
func @basic_view_broadcast(%arg : tensor<256xf32,#blocked0>) {
// CHECK: llvm.mlir.undef
// CHECK: %[[T0:.*]] = llvm.extractvalue
// CHECK: %[[T1:.*]] = llvm.extractvalue
%0 = tt.view %arg : (tensor<256xf32, #blocked0>) -> tensor<256x1xf32,#blocked2>
// CHECK: llvm.mlir.undef
// CHECK: llvm.insertvalue %[[T0]]
// CHECK: llvm.insertvalue %[[T0]]
// CHECK: llvm.insertvalue %[[T0]]
// CHECK: llvm.insertvalue %[[T0]]
// CHECK: llvm.insertvalue %[[T1]]
// CHECK: llvm.insertvalue %[[T1]]
// CHECK: llvm.insertvalue %[[T1]]
// CHECK: llvm.insertvalue %[[T1]]
%1 = tt.broadcast %0 : (tensor<256x1xf32,#blocked2>) -> tensor<256x4xf32, #blocked2>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [2], threadsPerWarp = [32], warpsPerCTA = [1], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: basic_make_range
func @basic_make_range() {
// CHECK: nvvm.read.ptx.sreg.tid.x
// CHECK: llvm.mlir.undef
// CHECK: llvm.insertvalue
// CHECK: llvm.insertvalue
%0 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #blocked0>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: basic_addf
func @basic_addf(%arg0 : tensor<256xf32,#blocked0>, %arg1 : tensor<256xf32,#blocked0>) {
// CHECK: llvm.fadd
// CHECK: llvm.fadd
%1 = arith.addf %arg0, %arg1 : tensor<256xf32,#blocked0>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: basic_addi
func @basic_addi(%arg0 : tensor<256xi32,#blocked0>, %arg1 : tensor<256xi32,#blocked0>) {
// CHECK: llvm.add
// CHECK: llvm.add
%1 = arith.addi %arg0, %arg1 : tensor<256xi32,#blocked0>
return
}
}
// -----
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: basic_program_id
func @basic_program_id() {
// CHECK: nvvm.read.ptx.sreg.ctaid.x : i32
%0 = tt.get_program_id {axis = 0 : i32} : i32
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: basic_addptr
func @basic_addptr(%arg0 : tensor<256x!tt.ptr<f32>,#blocked0>, %arg1 : tensor<256xi32,#blocked0>) {
// CHECK: llvm.getelementptr
// CHECK: llvm.getelementptr
%0 = tt.addptr %arg0, %arg1 : tensor<256x!tt.ptr<f32>, #blocked0>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK: basic_splat
func @basic_splat(%ptr: !tt.ptr<f32>) {
// CHECK: llvm.mlir.undef
// CHECK: llvm.insertvalue
// CHECK: llvm.insertvalue
%0 = tt.splat %ptr : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>,#blocked0>
return
}
}
// -----
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
module attributes {"triton_gpu.num-warps" = 4 : i32} {
// CHECK-LABEL: basic_store
func @basic_store(%ptrs: tensor<256x!tt.ptr<f32>, #blocked0>, %vals: tensor<256xf32, #blocked0>, %mask: tensor<256xi1, #blocked0>) {
// CHECK: llvm.inline_asm has_side_effects asm_dialect = att
// CHECK-SAME: @${{.*}} st.global.b32 [ ${{.*}} + 0 ], { ${{.*}} };", "r,l,b" %{{.*}}, %{{.*}}, %{{.*}} : (i32, !llvm.ptr<f32, 1>, i1) -> !llvm.void
// CHECK: llvm.inline_asm has_side_effects asm_dialect = att
// CHECK-SAME: @${{.*}} st.global.b32 [ ${{.*}} + 0 ], { ${{.*}} };", "r,l,b" %{{.*}}, %{{.*}}, %{{.*}} : (i32, !llvm.ptr<f32, 1>, i1) -> !llvm.void
tt.store %ptrs, %vals, %mask : tensor<256xf32, #blocked0>
return
}
}