Files
triton/autotune/python/genetic.py
2014-09-14 16:35:22 -04:00

172 lines
7.1 KiB
Python

import random
import time
import sys
import tools
import pyviennacl as vcl
import numpy as np
import copy
from deap import algorithms
from collections import OrderedDict as odict
def closest_divisor(N, x):
x_low=x_high=max(1,min(round(x),N))
while N % x_low > 0 and x_low>0:
x_low = x_low - 1
while N % x_high > 0 and x_high < N:
x_high = x_high + 1
return x_low if x - x_low < x_high - x else x_high
class GeneticOperators(object):
def __init__(self, device, statement, parameters, parameter_names, TemplateType, build_template):
self.device = device
self.statement = statement
self.parameters = parameters
self.parameter_names = parameter_names
self.TemplateType = TemplateType
self.ParameterType = TemplateType.Parameters
self.build_template = build_template
self.cache = {}
self.indpb = 0.1
def decode(self):
simd = 2**int(s[0:2], 2)
ls0 = 2**int(s[2:5],2)
ls1 = 2**int(s[5:8],2)
kL = 2**int(s[8:11],2)
mS = 2**int(s[11:14],2)
kS = 2**int(s[14:17],2)
nS = 2**int(s[17:20],2)
fetchA = s[20:22].count(1)
fetchB = s[22:24].count(1)
lf0 = 2**int(s[24:7],2)
return [simd, ls0, kL, ls1, mS, kS, nS, fetchA, fetchB, lf0, ls0*ls1/lf0]
def init(self):
while True:
result = [random.choice(L) for L in self.parameters]
template = self.build_template(self.TemplateType.Parameters(*result))
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
local_size = template.parameters.local_size_0*template.parameters.local_size_1
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
if template.check(self.statement)==0 and occupancy_record.occupancy >= 10 :
return result
def crossover(self, ind1, ind2):
ind1[1], ind2[1] = ind2[1], ind1[1]
ind1[3], ind2[3] = ind2[3], ind1[3]
ind1[7], ind2[7] = ind2[7], ind1[7]
ind1[8], ind2[8] = ind2[8], ind1[8]
ind1[9], ind2[9] = ind2[9], ind1[9]
ind1[10], ind2[10] = ind2[10], ind1[10]
return ind1, ind2
def mutate(self, individual):
FetchingPolicy = vcl.atidlas.FetchingPolicy
while True:
new_individual = copy.deepcopy(individual)
for i in new_individual:
if random.random() < self.indpb:
coef = 2**np.random.geometric(0.8)
funs = [lambda x:max(1, x/coef), lambda x:x*coef]
F = random.choice(funs)
nF = funs[1] if F==funs[0] else funs[0]
def m0():
new_individual[1], new_individual[3] = new_individual[3], new_individual[1]
def m1():
new_individual[4], new_individual[6] = new_individual[6], new_individual[4]
def m2():
new_individual[9], new_individual[10] = new_individual[10], new_individual[9]
def m3():
new_individual[0] = F(new_individual[0])
def m4():
new_individual[1], new_individual[9] = F(new_individual[1]), F(new_individual[9])
def m5():
new_individual[2] = F(new_individual[2])
def m6():
new_individual[3], new_individual[10] = F(new_individual[3]), F(new_individual[10])
def m7():
new_individual[4] = F(new_individual[4])
def m8():
new_individual[5] = F(new_individual[5])
def m9():
new_individual[6] = F(new_individual[6])
def m10():
new_individual[7] = random.choice([x for x in self.parameters[7] if x!=individual[7]])
if new_individual[7]!=FetchingPolicy.FETCH_FROM_LOCAL and new_individual[8]!=FetchingPolicy.FETCH_FROM_LOCAL:
new_individual[9], new_individual[10] = 0, 0
else:
new_individual[9], new_individual[10] = new_individual[1], new_individual[3]
def m11():
new_individual[8] = random.choice([x for x in self.parameters[8] if x!=individual[8]])
if new_individual[7]!=FetchingPolicy.FETCH_FROM_LOCAL and new_individual[8]!=FetchingPolicy.FETCH_FROM_LOCAL:
new_individual[9], new_individual[10] = 0, 0
else:
new_individual[9], new_individual[10] = new_individual[1], new_individual[3]
def m12():
new_individual[9], new_individual[10] = F(new_individual[9]), nF(new_individual[10])
def m13():
new_individual[10], new_individual[9] = F(new_individual[10]), nF(new_individual[9])
def m14():
new_individual[1], new_individual[3] = F(new_individual[1]), nF(new_individual[3])
def m15():
new_individual[3], new_individual[1] = F(new_individual[3]), nF(new_individual[1])
random.choice([m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12, m13])()
template = self.build_template(self.TemplateType.Parameters(*new_individual))
if not tools.skip(template, self.statement, self.device):
break
return new_individual,
def evaluate(self, individual):
if tuple(individual) not in self.cache:
template = self.build_template(self.TemplateType.Parameters(*individual))
try:
self.cache[tuple(individual)] = tools.benchmark(template, self.statement, self.device)
except:
self.cache[tuple(individual)] = 10
return self.cache[tuple(individual)],
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric):
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in population if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
if halloffame is not None:
halloffame.update(population)
# Begin the generational process
gen = 0
maxtime = time.strptime(maxtime, '%Mm%Ss')
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
start_time = time.time()
while time.time() - start_time < maxtime and gen < maxgen:
# Vary the population
offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# Update the hall of fame with the generated individuals
if halloffame is not None:
halloffame.update(offspring)
# Select the next generation population
population[:] = toolbox.select(population + offspring, mu)
# Update the statistics with the new population
gen = gen + 1
best_profile = '(%s)'%','.join(map(str,halloffame[0]));
best_performance = compute_perf(halloffame[0].fitness.values[0])
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\r'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
sys.stdout.flush()
sys.stdout.write('\n')
return population