Files
triton/v1.1.2/getting-started/tutorials/05-layer-norm.html
2022-09-10 00:52:29 +00:00

557 lines
70 KiB
HTML

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Layer Normalization &mdash; Triton documentation</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/custom.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="triton" href="../../python-api/triton.html" />
<link rel="prev" title="Low-Memory Dropout" href="04-low-memory-dropout.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> Triton
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation.html">Installation</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Tutorials</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="01-vector-add.html">Vector Addition</a></li>
<li class="toctree-l2"><a class="reference internal" href="02-fused-softmax.html">Fused Softmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="03-matrix-multiplication.html">Matrix Multiplication</a></li>
<li class="toctree-l2"><a class="reference internal" href="04-low-memory-dropout.html">Low-Memory Dropout</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Layer Normalization</a></li>
</ul>
</li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.html">triton</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.language.html">triton.language</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.testing.html">triton.testing</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Programming Guide</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-1/introduction.html">Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-2/related-work.html">Related Work</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">Triton</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="index.html">Tutorials</a> &raquo;</li>
<li>Layer Normalization</li>
<li class="wy-breadcrumbs-aside">
<a href="../../_sources/getting-started/tutorials/05-layer-norm.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p>Click <a class="reference internal" href="#sphx-glr-download-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">here</span></a>
to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="layer-normalization">
<span id="sphx-glr-getting-started-tutorials-05-layer-norm-py"></span><h1>Layer Normalization<a class="headerlink" href="#layer-normalization" title="Permalink to this headline"></a></h1>
<img alt="05 layer norm" class="sphx-glr-single-img" src="../../_images/sphx_glr_05-layer-norm_001.png" />
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.096776 311.088617
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 327.679984
3 2560.0 461.954908 182.857144 325.079368
4 3072.0 511.999982 191.501303 317.793096
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 498.162157 231.849059 286.507772
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.107920 291.310338
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 507.469040 262.243907 288.160801
13 7680.0 481.253256 260.707203 277.381492
14 8192.0 460.440290 269.141693 286.600589
15 8704.0 416.958106 267.815384 285.377055
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 439.683593 280.615388 288.950501
18 10240.0 447.650282 286.767793 290.496460
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.826879 249.227509 288.686414
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.135142 253.465340 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 404.604870 257.390218 292.571423
26 14336.0 398.222222 254.673567 286.481278
27 14848.0 384.829370 257.293872 289.246765
28 15360.0 374.253788 257.790220 286.656296
29 15872.0 366.982663 262.708969 291.229369
</pre></div>
</div>
<div class="line-block">
<div class="line"><br /></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">triton.language</span> <span class="k">as</span> <span class="nn">tl</span>
<span class="kn">import</span> <span class="nn">triton</span>
<span class="c1"># Forward Pass</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_fwd_fused</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">Y</span><span class="p">,</span> <span class="n">W</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span> <span class="o">**</span><span class="n">META</span><span class="p">):</span>
<span class="n">BLOCK_SIZE</span> <span class="o">=</span> <span class="n">META</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE&#39;</span><span class="p">]</span>
<span class="c1"># position of elements processed by this program</span>
<span class="n">row</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">cols</span> <span class="o">&lt;</span> <span class="n">N</span>
<span class="c1"># offset data pointers to start at the row of interest</span>
<span class="n">X</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">Y</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="c1"># load data and cast to float32</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">X</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="c1"># compute mean</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="c1"># compute std</span>
<span class="n">xmean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">var</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">xmean</span> <span class="o">*</span> <span class="n">xmean</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">/</span> <span class="n">tl</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">var</span> <span class="o">+</span> <span class="n">eps</span><span class="p">)</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="n">xmean</span><span class="o">*</span><span class="n">rstd</span>
<span class="c1"># write-back mean/rstd</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">M</span> <span class="o">+</span> <span class="n">row</span><span class="p">,</span> <span class="n">mean</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">V</span> <span class="o">+</span> <span class="n">row</span><span class="p">,</span> <span class="n">rstd</span><span class="p">)</span>
<span class="c1"># multiply by weight and add bias</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">W</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">B</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">xhat</span> <span class="o">*</span> <span class="n">w</span> <span class="o">+</span> <span class="n">b</span>
<span class="c1"># write-back</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">Y</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># Backward pass (DX + partial DW + partial DB)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_bwd_dx_fused</span><span class="p">(</span><span class="n">DX</span><span class="p">,</span> <span class="n">DY</span><span class="p">,</span> <span class="n">DW</span><span class="p">,</span> <span class="n">DB</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">Lock</span><span class="p">,</span>
<span class="n">stride</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span>
<span class="o">**</span><span class="n">META</span><span class="p">):</span>
<span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="n">META</span><span class="p">[</span><span class="s1">&#39;GROUP_SIZE_M&#39;</span><span class="p">]</span>
<span class="n">BLOCK_SIZE_N</span> <span class="o">=</span> <span class="n">META</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_N&#39;</span><span class="p">]</span>
<span class="c1"># position of elements processed by this program</span>
<span class="n">row</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">cols</span> <span class="o">&lt;</span> <span class="n">N</span>
<span class="c1"># offset data pointers to start at the row of interest</span>
<span class="n">X</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">DY</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">DX</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="c1"># offset locks and weight/bias gradient pointer</span>
<span class="c1"># each kernel instance accumulates partial sums for</span>
<span class="c1"># DW and DB into one of GROUP_SIZE_M independent buffers</span>
<span class="c1"># these buffers stay in the L2, which allow this kernel</span>
<span class="c1"># to be fast</span>
<span class="n">lock_id</span> <span class="o">=</span> <span class="n">row</span> <span class="o">%</span> <span class="n">GROUP_SIZE_M</span>
<span class="n">Lock</span> <span class="o">+=</span> <span class="n">lock_id</span>
<span class="n">Count</span> <span class="o">=</span> <span class="n">Lock</span> <span class="o">+</span> <span class="n">GROUP_SIZE_M</span>
<span class="n">DW</span> <span class="o">=</span> <span class="n">DW</span> <span class="o">+</span> <span class="n">lock_id</span><span class="o">*</span><span class="n">N</span> <span class="o">+</span> <span class="n">cols</span>
<span class="n">DB</span> <span class="o">=</span> <span class="n">DB</span> <span class="o">+</span> <span class="n">lock_id</span><span class="o">*</span><span class="n">N</span> <span class="o">+</span> <span class="n">cols</span>
<span class="c1"># load data to SRAM</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">X</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DY</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">W</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">M</span> <span class="o">+</span> <span class="n">row</span><span class="p">)</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">V</span> <span class="o">+</span> <span class="n">row</span><span class="p">)</span>
<span class="c1"># compute dx</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span><span class="o">*</span><span class="n">rstd</span>
<span class="n">wdy</span> <span class="o">=</span> <span class="n">w</span> <span class="o">*</span> <span class="n">dy</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">xhat</span><span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">wdy</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">wdy</span> <span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">mean1</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">xhat</span> <span class="o">*</span> <span class="n">wdy</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">mean2</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">wdy</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">dx</span> <span class="o">=</span> <span class="p">(</span><span class="n">wdy</span> <span class="o">-</span> <span class="p">(</span><span class="n">xhat</span><span class="o">*</span><span class="n">mean1</span> <span class="o">+</span> <span class="n">mean2</span><span class="p">))</span><span class="o">*</span><span class="n">rstd</span>
<span class="c1"># write-back dx</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DX</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">dx</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># accumulate partial sums for dw/db</span>
<span class="n">partial_dw</span> <span class="o">=</span> <span class="p">(</span><span class="n">dy</span><span class="o">*</span><span class="n">xhat</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">partial_db</span> <span class="o">=</span> <span class="p">(</span><span class="n">dy</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">while</span> <span class="n">tl</span><span class="o">.</span><span class="n">atomic_cas</span><span class="p">(</span><span class="n">Lock</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">pass</span>
<span class="n">count</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">Count</span><span class="p">)</span>
<span class="c1"># first store doesn&#39;t accumulate</span>
<span class="k">if</span> <span class="n">count</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">tl</span><span class="o">.</span><span class="n">atomic_xchg</span><span class="p">(</span><span class="n">Count</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">partial_dw</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">partial_db</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DB</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">partial_dw</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DB</span><span class="p">,</span> <span class="n">partial_db</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># release lock</span>
<span class="n">tl</span><span class="o">.</span><span class="n">atomic_xchg</span><span class="p">(</span><span class="n">Lock</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># Backward pass (total DW + total DB)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_bwd_dwdb</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">DB</span><span class="p">,</span> <span class="n">FINAL_DW</span><span class="p">,</span> <span class="n">FINAL_DB</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="o">**</span><span class="n">meta</span><span class="p">):</span>
<span class="n">pid</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">BLOCK_SIZE_M</span> <span class="o">=</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_M&#39;</span><span class="p">]</span>
<span class="n">BLOCK_SIZE_N</span> <span class="o">=</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_N&#39;</span><span class="p">]</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">pid</span><span class="o">*</span><span class="n">BLOCK_SIZE_N</span> <span class="o">+</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">)</span>
<span class="n">dw</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">BLOCK_SIZE_M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">db</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">BLOCK_SIZE_M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_M</span><span class="p">):</span>
<span class="n">rows</span> <span class="o">=</span> <span class="n">i</span> <span class="o">+</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_M&#39;</span><span class="p">])</span>
<span class="n">mask</span> <span class="o">=</span> <span class="p">(</span><span class="n">rows</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span> <span class="o">&lt;</span> <span class="n">M</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:]</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">)</span>
<span class="n">offs</span> <span class="o">=</span> <span class="n">rows</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span><span class="o">*</span><span class="n">N</span> <span class="o">+</span> <span class="n">cols</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:]</span>
<span class="n">dw</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DW</span> <span class="o">+</span> <span class="n">offs</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">db</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DB</span> <span class="o">+</span> <span class="n">offs</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">sum_dw</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dw</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">sum_db</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">db</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">FINAL_DW</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">sum_dw</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">cols</span><span class="o">&lt;</span><span class="n">N</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">FINAL_DB</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">sum_db</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">cols</span><span class="o">&lt;</span><span class="n">N</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">LayerNorm</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">normalized_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">):</span>
<span class="c1"># allocate output</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># reshape input data into 2D tensor</span>
<span class="n">x_arg</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">x_arg</span><span class="o">.</span><span class="n">shape</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">M</span><span class="p">,</span> <span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">M</span><span class="p">,</span> <span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="c1"># Less than 64KB per feature: enqueue fused kernel</span>
<span class="n">MAX_FUSED_SIZE</span> <span class="o">=</span> <span class="mi">65536</span> <span class="o">//</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span>
<span class="n">BLOCK_SIZE</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">MAX_FUSED_SIZE</span><span class="p">,</span> <span class="n">triton</span><span class="o">.</span><span class="n">next_power_of_2</span><span class="p">(</span><span class="n">N</span><span class="p">))</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&gt;</span> <span class="n">BLOCK_SIZE</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">&quot;This layer norm doesn&#39;t support feature dim &gt;= 64KB.&quot;</span><span class="p">)</span>
<span class="c1"># heuristics for number of warps</span>
<span class="n">num_warps</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">BLOCK_SIZE</span> <span class="o">//</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">8</span><span class="p">)</span>
<span class="c1"># enqueue kernel</span>
<span class="n">_layer_norm_fwd_fused</span><span class="p">[(</span><span class="n">M</span><span class="p">,)](</span><span class="n">x_arg</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">rstd</span><span class="p">,</span>
<span class="n">x_arg</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span>
<span class="n">BLOCK_SIZE</span><span class="o">=</span><span class="n">BLOCK_SIZE</span><span class="p">,</span> <span class="n">num_warps</span><span class="o">=</span><span class="n">num_warps</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">rstd</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">BLOCK_SIZE</span> <span class="o">=</span> <span class="n">BLOCK_SIZE</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">num_warps</span> <span class="o">=</span> <span class="n">num_warps</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">eps</span> <span class="o">=</span> <span class="n">eps</span>
<span class="k">return</span> <span class="n">y</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">dy</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="c1"># heuristics for amount of parallel reduction stream for DG/DB</span>
<span class="n">N</span> <span class="o">=</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">64</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">8192</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">96</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">4096</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">128</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">1024</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">256</span>
<span class="c1"># allocate output</span>
<span class="n">locks</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">_dw</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">_db</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">dw</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">db</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">dx</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">dy</span><span class="p">)</span>
<span class="c1"># enqueue kernel using forward pass heuristics</span>
<span class="c1"># also compute partial sums for DW and DB</span>
<span class="n">x_arg</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">x_arg</span><span class="o">.</span><span class="n">shape</span>
<span class="n">_layer_norm_bwd_dx_fused</span><span class="p">[(</span><span class="n">M</span><span class="p">,)](</span><span class="n">dx</span><span class="p">,</span> <span class="n">dy</span><span class="p">,</span> <span class="n">_dw</span><span class="p">,</span> <span class="n">_db</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">locks</span><span class="p">,</span>
<span class="n">x_arg</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">N</span><span class="p">,</span> <span class="n">ctx</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_N</span><span class="o">=</span><span class="n">ctx</span><span class="o">.</span><span class="n">BLOCK_SIZE</span><span class="p">,</span>
<span class="n">GROUP_SIZE_M</span><span class="o">=</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span>
<span class="n">num_warps</span><span class="o">=</span><span class="n">ctx</span><span class="o">.</span><span class="n">num_warps</span><span class="p">)</span>
<span class="n">grid</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">meta</span><span class="p">:</span> <span class="p">[</span><span class="n">triton</span><span class="o">.</span><span class="n">cdiv</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_N&#39;</span><span class="p">])]</span>
<span class="c1"># accumulate partial sums in separate kernel</span>
<span class="n">_layer_norm_bwd_dwdb</span><span class="p">[</span><span class="n">grid</span><span class="p">](</span><span class="n">_dw</span><span class="p">,</span> <span class="n">_db</span><span class="p">,</span> <span class="n">dw</span><span class="p">,</span> <span class="n">db</span><span class="p">,</span> <span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_M</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_N</span> <span class="o">=</span> <span class="mi">128</span><span class="p">)</span>
<span class="k">return</span> <span class="n">dx</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="n">dw</span><span class="p">,</span> <span class="n">db</span><span class="p">,</span> <span class="kc">None</span>
<span class="n">layer_norm</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="o">.</span><span class="n">apply</span>
<span class="k">def</span> <span class="nf">test_layer_norm</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">):</span>
<span class="c1"># create data</span>
<span class="n">x_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
<span class="n">w_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">x_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">)</span>
<span class="n">weight</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="o">-</span><span class="mf">2.3</span> <span class="o">+</span> <span class="mf">0.5</span><span class="o">*</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">x_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="mf">.1</span><span class="o">*</span><span class="n">torch</span><span class="o">.</span><span class="n">randn_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span><span class="o">.</span><span class="n">requires_grad_</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># forward pass</span>
<span class="n">y_tri</span> <span class="o">=</span> <span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="n">y_ref</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># backward pass (triton)</span>
<span class="n">y_tri</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">dx_tri</span><span class="p">,</span> <span class="n">dw_tri</span><span class="p">,</span> <span class="n">db_tri</span> <span class="o">=</span> <span class="p">[</span><span class="n">_</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">]]</span>
<span class="n">x</span><span class="o">.</span><span class="n">grad</span><span class="p">,</span> <span class="n">weight</span><span class="o">.</span><span class="n">grad</span><span class="p">,</span> <span class="n">bias</span><span class="o">.</span><span class="n">grad</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
<span class="c1"># backward pass (torch)</span>
<span class="n">y_ref</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">dx_ref</span><span class="p">,</span> <span class="n">dw_ref</span><span class="p">,</span> <span class="n">db_ref</span> <span class="o">=</span> <span class="p">[</span><span class="n">_</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">]]</span>
<span class="c1"># compare</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">y_tri</span><span class="p">,</span> <span class="n">y_ref</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">dx_tri</span><span class="p">,</span> <span class="n">dx_ref</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">db_tri</span><span class="p">,</span> <span class="n">db_ref</span><span class="p">,</span> <span class="n">decimal</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">dw_tri</span><span class="p">,</span> <span class="n">dw_ref</span><span class="p">,</span> <span class="n">decimal</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">perf_report</span><span class="p">(</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">Benchmark</span><span class="p">(</span>
<span class="n">x_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;N&#39;</span><span class="p">],</span>
<span class="n">x_vals</span><span class="o">=</span><span class="p">[</span><span class="mi">512</span> <span class="o">*</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">32</span><span class="p">)],</span>
<span class="n">line_arg</span><span class="o">=</span><span class="s1">&#39;provider&#39;</span><span class="p">,</span>
<span class="n">line_vals</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;triton&#39;</span><span class="p">,</span> <span class="s1">&#39;torch&#39;</span><span class="p">,</span> <span class="s1">&#39;apex&#39;</span><span class="p">],</span>
<span class="n">line_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;Triton&#39;</span><span class="p">,</span> <span class="s1">&#39;Torch&#39;</span><span class="p">,</span> <span class="s1">&#39;Apex&#39;</span><span class="p">],</span>
<span class="n">styles</span><span class="o">=</span><span class="p">[(</span><span class="s1">&#39;blue&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;green&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;orange&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">)],</span>
<span class="n">ylabel</span><span class="o">=</span><span class="s1">&#39;GB/s&#39;</span><span class="p">,</span>
<span class="n">plot_name</span><span class="o">=</span><span class="s1">&#39;layer-norm-backward&#39;</span><span class="p">,</span>
<span class="n">args</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;M&#39;</span><span class="p">:</span> <span class="mi">4096</span><span class="p">,</span> <span class="s1">&#39;dtype&#39;</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">float16</span><span class="p">,</span> <span class="s1">&#39;mode&#39;</span><span class="p">:</span> <span class="s1">&#39;backward&#39;</span><span class="p">}</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">bench_layer_norm</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">provider</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">&#39;backward&#39;</span><span class="p">,</span><span class="n">eps</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">):</span>
<span class="c1"># create data</span>
<span class="n">x_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
<span class="n">w_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">x_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">)</span>
<span class="n">weight</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="o">-</span><span class="mf">2.3</span> <span class="o">+</span> <span class="mf">0.5</span><span class="o">*</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">x_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="mf">.1</span><span class="o">*</span><span class="n">torch</span><span class="o">.</span><span class="n">randn_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span><span class="o">.</span><span class="n">requires_grad_</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># utility functions</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;triton&#39;</span><span class="p">:</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;torch&#39;</span><span class="p">:</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;apex&#39;</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">apex</span>
<span class="n">apex_layer_norm</span> <span class="o">=</span> <span class="n">apex</span><span class="o">.</span><span class="n">normalization</span><span class="o">.</span><span class="n">FusedLayerNorm</span><span class="p">(</span><span class="n">w_shape</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">device</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">apex_layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># forward pass</span>
<span class="k">if</span> <span class="n">mode</span> <span class="o">==</span> <span class="s1">&#39;forward&#39;</span><span class="p">:</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">2</span><span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span><span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span><span class="o">/</span><span class="n">ms</span><span class="o">*</span><span class="mf">1e-6</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="n">y_fwd</span><span class="p">,</span> <span class="n">rep</span><span class="o">=</span><span class="mi">500</span><span class="p">)</span>
<span class="c1"># backward pass</span>
<span class="k">if</span> <span class="n">mode</span> <span class="o">==</span> <span class="s1">&#39;backward&#39;</span><span class="p">:</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">3</span><span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span><span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span><span class="o">/</span><span class="n">ms</span><span class="o">*</span><span class="mf">1e-6</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">y_fwd</span><span class="p">()</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">y</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="n">grad_to_none</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="p">],</span> <span class="n">rep</span><span class="o">=</span><span class="mi">500</span><span class="p">)</span>
<span class="k">return</span> <span class="n">gbps</span><span class="p">(</span><span class="n">ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">max_ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">min_ms</span><span class="p">)</span>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.312 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>
</div>
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/ae7fff29e1b574187bc930ed94bcc353/05-layer-norm.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">05-layer-norm.ipynb</span></code></a></p>
</div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../../python-api/triton.html" class="btn btn-neutral float-right" title="triton" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
<a href="04-low-memory-dropout.html" class="btn btn-neutral float-left" title="Low-Memory Dropout" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2020, Philippe Tillet.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" data-toggle="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<span class="fa fa-book"> Other Versions</span>
v: v1.1.2
<span class="fa fa-caret-down"></span>
</span>
<div class="rst-other-versions">
<dl>
<dt>Tags</dt>
<dd><a href="05-layer-norm.html">v1.1.2</a></dd>
</dl>
<dl>
<dt>Branches</dt>
<dd><a href="../../../master/index.html">master</a></dd>
</dl>
</div>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>