Files
triton/python/triton/language/random.py
2021-10-04 18:39:40 -07:00

212 lines
5.8 KiB
Python

import triton
from . import core as tl
# Notes
# 1. triton doesn't support uint32, so we use int32 instead and benefit from the fact that two's complement operations are equivalent to uint operations.
# 2. multiply_low_high is currently inefficient.
# 3. Even though technically philox sampling outputs int, in many places we pretends they were actualy uints e.g. uint_to_uniform_float
@triton.jit
def PHILOX_KEY_A():
# 0x9E3779B9
return -1640531527
@triton.jit
def PHILOX_KEY_B():
# 0xBB67AE85
return -1150833019
@triton.jit
def PHILOX_ROUND_A():
# 0xD2511F53
return -766435501
@triton.jit
def PHILOX_ROUND_B():
# 0xCD9E8D57
return -845247145
@triton.jit
def hacky_to_uint64(x):
return ((x >> 1).to(tl.int64) << 1) + (x & 1).to(tl.int64)
@triton.jit
def multiply_low_high(a, b):
return (
a * b,
((hacky_to_uint64(a) * hacky_to_uint64(b)) >> 32).to(tl.int32)
)
@triton.jit
def single_round(c0, c1, c2, c3, k0, k1):
A = PHILOX_ROUND_A()
B = PHILOX_ROUND_B()
lo0, hi0 = multiply_low_high(A, c0)
lo1, hi1 = multiply_low_high(B, c2)
return (
hi1 ^ c1 ^ k0,
lo1,
hi0 ^ c3 ^ k1,
lo0,
)
@triton.jit
def raise_key(k0, k1):
return (
k0 + PHILOX_KEY_A(),
k1 + PHILOX_KEY_B(),
)
@triton.jit
def philox_f(c0, c1, c2, c3, k0, k1):
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
k0, k1 = raise_key(k0, k1)
c0, c1, c2, c3 = single_round(c0, c1, c2, c3, k0, k1)
return c0, c1, c2, c3
@triton.jit
def uint32_to_uniform_float(x):
"""
Numerically stable function to convert a random integer into a random float uniformly sampled in [0, 1).
This is originally designed from uint32, but it works with int32 too as long as the int32 uniformly
covers all the possible values it can take.
"""
mantissa = x & 0x7fffff
exp = 127
res = mantissa | (exp << 23)
return res.to(tl.float32, bitcast=True) - 1.0
@triton.jit
def pair_uniform_to_normal(u1, u2):
"""Box-Muller transform"""
u1 = tl.maximum(1.0e-7, u1)
th = 6.283185307179586 * u2
r = tl.sqrt(-2.0 * tl.log(u1))
return r * tl.cos(th), r * tl.sin(th)
@triton.jit
def randint4x(seed, offset):
"""
Given a :code:`seed` scalar and an :code:`offset` block, returns four
blocks of random :code:`int32`.
This is the maximally efficient entry point
to Triton's Philox pseudo-random number generator.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
z = 0
seed = hacky_to_uint64(seed) # uint will solve this
seed_hi = ((seed >> 32) & 0xffffffff).to(tl.int32)
seed_lo = (seed & 0xffffffff).to(tl.int32)
return philox_f(offset, z, z, z, seed_lo, seed_hi)
@triton.jit
def randint(seed, offset):
"""
Given a :code:`seed` scalar and an :code:`offset` block, returns a single
block of random :code:`int32`.
If you need multiple streams of random numbers,
using `randint4x` is likely to be faster than calling `randint` 4 times.
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
ret, _, _, _ = randint4x(seed, offset)
return ret
@triton.jit
def rand(seed, offset):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns a block of random :code:`float32` in :math:`U(0, 1)`
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
source = randint(seed, offset)
return uint32_to_uniform_float(source)
@triton.jit
def randn(seed, offset):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns a block of random :code:`float32` in :math:`\mathcal{N}(0, 1)`
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
i1, i2, _, _ = randint4x(seed, offset)
u1 = uint32_to_uniform_float(i1)
u2 = uint32_to_uniform_float(i2)
n1, _ = pair_uniform_to_normal(u1, u2)
return n1
@triton.jit
def rand4x(seed, offsets):
"""
Given a :code:`seed` scalar and an :code:`offsets` block,
returns a 4 blocks of random :code:`float32` in :math:`U(0, 1)`
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
i1, i2, i3, i4 = randint4x(seed, offsets)
u1 = uint32_to_uniform_float(i1)
u2 = uint32_to_uniform_float(i2)
u3 = uint32_to_uniform_float(i3)
u4 = uint32_to_uniform_float(i4)
return u1, u2, u3, u4
@triton.jit
def randn4x(seed, offset):
"""
Given a :code:`seed` scalar and an :code:`offset` block,
returns a 4 blocks of random :code:`float32` in :math:`\mathcal{N}(0, 1)`
:param seed: The seed for generating random numbers.
:param offsets: The offsets to generate random numbers for.
"""
u1, u2, u3, u4 = rand4x(seed, offset)
n1, n2 = pair_uniform_to_normal(u1, u2)
n3, n4 = pair_uniform_to_normal(u3, u4)
return n1, n2, n3, n4