Files
triton/v1.1.2/getting-started/tutorials/05-layer-norm.html
2022-02-21 00:40:40 +00:00

557 lines
70 KiB
HTML

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Layer Normalization &mdash; Triton documentation</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-rendered-html.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/custom.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="triton" href="../../python-api/triton.html" />
<link rel="prev" title="Low-Memory Dropout" href="04-low-memory-dropout.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> Triton
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation.html">Installation</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Tutorials</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="01-vector-add.html">Vector Addition</a></li>
<li class="toctree-l2"><a class="reference internal" href="02-fused-softmax.html">Fused Softmax</a></li>
<li class="toctree-l2"><a class="reference internal" href="03-matrix-multiplication.html">Matrix Multiplication</a></li>
<li class="toctree-l2"><a class="reference internal" href="04-low-memory-dropout.html">Low-Memory Dropout</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Layer Normalization</a></li>
</ul>
</li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Python API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.html">triton</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.language.html">triton.language</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../python-api/triton.testing.html">triton.testing</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Programming Guide</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-1/introduction.html">Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-2/related-work.html">Related Work</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">Triton</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="index.html">Tutorials</a> &raquo;</li>
<li>Layer Normalization</li>
<li class="wy-breadcrumbs-aside">
<a href="../../_sources/getting-started/tutorials/05-layer-norm.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p>Click <a class="reference internal" href="#sphx-glr-download-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">here</span></a>
to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="layer-normalization">
<span id="sphx-glr-getting-started-tutorials-05-layer-norm-py"></span><h1>Layer Normalization<a class="headerlink" href="#layer-normalization" title="Permalink to this headline"></a></h1>
<img alt="05 layer norm" class="sphx-glr-single-img" src="../../_images/sphx_glr_05-layer-norm_001.png" />
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 307.200008 98.303995 303.407414
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 420.102553 161.684218 325.509933
3 2560.0 461.954908 181.238943 326.808501
4 3072.0 511.999982 191.999993 317.793096
5 3584.0 551.384634 208.271186 311.652167
6 4096.0 568.231237 220.412561 295.207204
7 4608.0 500.416301 232.825259 292.571431
8 5120.0 525.128191 242.845844 288.450695
9 5632.0 540.671974 243.107920 289.438969
10 6144.0 542.117638 248.661056 286.879370
11 6656.0 530.710976 256.000009 285.767438
12 7168.0 505.976473 260.654538 286.242939
13 7680.0 481.253256 262.190612 278.429013
14 8192.0 463.698115 267.130429 284.939124
15 8704.0 416.958106 267.472468 284.599455
16 9216.0 429.483477 272.394084 288.751954
17 9728.0 438.033784 280.278512 289.667485
18 10240.0 447.650282 286.433562 289.811322
19 10752.0 428.651173 246.935876 290.922209
20 11264.0 429.104745 245.760001 286.676558
21 11776.0 423.089806 249.667843 288.686414
22 12288.0 420.102570 254.453844 294.323369
23 12800.0 414.574901 253.465340 288.180121
24 13312.0 412.242569 252.959629 289.916513
25 13824.0 406.090579 257.390218 291.799461
26 14336.0 396.387109 254.297107 286.959121
27 14848.0 386.918555 257.479779 289.246765
28 15360.0 373.495460 257.970599 285.989131
29 15872.0 370.192407 261.626369 289.899545
</pre></div>
</div>
<div class="line-block">
<div class="line"><br /></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">triton.language</span> <span class="k">as</span> <span class="nn">tl</span>
<span class="kn">import</span> <span class="nn">triton</span>
<span class="c1"># Forward Pass</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_fwd_fused</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">Y</span><span class="p">,</span> <span class="n">W</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span> <span class="o">**</span><span class="n">META</span><span class="p">):</span>
<span class="n">BLOCK_SIZE</span> <span class="o">=</span> <span class="n">META</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE&#39;</span><span class="p">]</span>
<span class="c1"># position of elements processed by this program</span>
<span class="n">row</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">cols</span> <span class="o">&lt;</span> <span class="n">N</span>
<span class="c1"># offset data pointers to start at the row of interest</span>
<span class="n">X</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">Y</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="c1"># load data and cast to float32</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">X</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="c1"># compute mean</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="c1"># compute std</span>
<span class="n">xmean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">var</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">xmean</span> <span class="o">*</span> <span class="n">xmean</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">/</span> <span class="n">tl</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">var</span> <span class="o">+</span> <span class="n">eps</span><span class="p">)</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="n">xmean</span><span class="o">*</span><span class="n">rstd</span>
<span class="c1"># write-back mean/rstd</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">M</span> <span class="o">+</span> <span class="n">row</span><span class="p">,</span> <span class="n">mean</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">V</span> <span class="o">+</span> <span class="n">row</span><span class="p">,</span> <span class="n">rstd</span><span class="p">)</span>
<span class="c1"># multiply by weight and add bias</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">W</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">B</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">xhat</span> <span class="o">*</span> <span class="n">w</span> <span class="o">+</span> <span class="n">b</span>
<span class="c1"># write-back</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">Y</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># Backward pass (DX + partial DW + partial DB)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_bwd_dx_fused</span><span class="p">(</span><span class="n">DX</span><span class="p">,</span> <span class="n">DY</span><span class="p">,</span> <span class="n">DW</span><span class="p">,</span> <span class="n">DB</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">W</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">Lock</span><span class="p">,</span>
<span class="n">stride</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span>
<span class="o">**</span><span class="n">META</span><span class="p">):</span>
<span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="n">META</span><span class="p">[</span><span class="s1">&#39;GROUP_SIZE_M&#39;</span><span class="p">]</span>
<span class="n">BLOCK_SIZE_N</span> <span class="o">=</span> <span class="n">META</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_N&#39;</span><span class="p">]</span>
<span class="c1"># position of elements processed by this program</span>
<span class="n">row</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">)</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">cols</span> <span class="o">&lt;</span> <span class="n">N</span>
<span class="c1"># offset data pointers to start at the row of interest</span>
<span class="n">X</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">DY</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="n">DX</span> <span class="o">+=</span> <span class="n">row</span> <span class="o">*</span> <span class="n">stride</span>
<span class="c1"># offset locks and weight/bias gradient pointer</span>
<span class="c1"># each kernel instance accumulates partial sums for</span>
<span class="c1"># DW and DB into one of GROUP_SIZE_M independent buffers</span>
<span class="c1"># these buffers stay in the L2, which allow this kernel</span>
<span class="c1"># to be fast</span>
<span class="n">lock_id</span> <span class="o">=</span> <span class="n">row</span> <span class="o">%</span> <span class="n">GROUP_SIZE_M</span>
<span class="n">Lock</span> <span class="o">+=</span> <span class="n">lock_id</span>
<span class="n">Count</span> <span class="o">=</span> <span class="n">Lock</span> <span class="o">+</span> <span class="n">GROUP_SIZE_M</span>
<span class="n">DW</span> <span class="o">=</span> <span class="n">DW</span> <span class="o">+</span> <span class="n">lock_id</span><span class="o">*</span><span class="n">N</span> <span class="o">+</span> <span class="n">cols</span>
<span class="n">DB</span> <span class="o">=</span> <span class="n">DB</span> <span class="o">+</span> <span class="n">lock_id</span><span class="o">*</span><span class="n">N</span> <span class="o">+</span> <span class="n">cols</span>
<span class="c1"># load data to SRAM</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">X</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DY</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">W</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">M</span> <span class="o">+</span> <span class="n">row</span><span class="p">)</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">V</span> <span class="o">+</span> <span class="n">row</span><span class="p">)</span>
<span class="c1"># compute dx</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="p">)</span><span class="o">*</span><span class="n">rstd</span>
<span class="n">wdy</span> <span class="o">=</span> <span class="n">w</span> <span class="o">*</span> <span class="n">dy</span>
<span class="n">xhat</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">xhat</span><span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">wdy</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="n">wdy</span> <span class="p">,</span> <span class="mf">0.</span><span class="p">)</span>
<span class="n">mean1</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">xhat</span> <span class="o">*</span> <span class="n">wdy</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">mean2</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">wdy</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="o">/</span> <span class="n">N</span>
<span class="n">dx</span> <span class="o">=</span> <span class="p">(</span><span class="n">wdy</span> <span class="o">-</span> <span class="p">(</span><span class="n">xhat</span><span class="o">*</span><span class="n">mean1</span> <span class="o">+</span> <span class="n">mean2</span><span class="p">))</span><span class="o">*</span><span class="n">rstd</span>
<span class="c1"># write-back dx</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DX</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">dx</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># accumulate partial sums for dw/db</span>
<span class="n">partial_dw</span> <span class="o">=</span> <span class="p">(</span><span class="n">dy</span><span class="o">*</span><span class="n">xhat</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">partial_db</span> <span class="o">=</span> <span class="p">(</span><span class="n">dy</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="k">while</span> <span class="n">tl</span><span class="o">.</span><span class="n">atomic_cas</span><span class="p">(</span><span class="n">Lock</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">pass</span>
<span class="n">count</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">Count</span><span class="p">)</span>
<span class="c1"># first store doesn&#39;t accumulate</span>
<span class="k">if</span> <span class="n">count</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">tl</span><span class="o">.</span><span class="n">atomic_xchg</span><span class="p">(</span><span class="n">Count</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">partial_dw</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">partial_db</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DB</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">partial_dw</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">DB</span><span class="p">,</span> <span class="n">partial_db</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1"># release lock</span>
<span class="n">tl</span><span class="o">.</span><span class="n">atomic_xchg</span><span class="p">(</span><span class="n">Lock</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1"># Backward pass (total DW + total DB)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_layer_norm_bwd_dwdb</span><span class="p">(</span><span class="n">DW</span><span class="p">,</span> <span class="n">DB</span><span class="p">,</span> <span class="n">FINAL_DW</span><span class="p">,</span> <span class="n">FINAL_DB</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="o">**</span><span class="n">meta</span><span class="p">):</span>
<span class="n">pid</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">BLOCK_SIZE_M</span> <span class="o">=</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_M&#39;</span><span class="p">]</span>
<span class="n">BLOCK_SIZE_N</span> <span class="o">=</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_N&#39;</span><span class="p">]</span>
<span class="n">cols</span> <span class="o">=</span> <span class="n">pid</span><span class="o">*</span><span class="n">BLOCK_SIZE_N</span> <span class="o">+</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">)</span>
<span class="n">dw</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">BLOCK_SIZE_M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">db</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">BLOCK_SIZE_M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_N</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">tl</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">BLOCK_SIZE_M</span><span class="p">):</span>
<span class="n">rows</span> <span class="o">=</span> <span class="n">i</span> <span class="o">+</span> <span class="n">tl</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_M&#39;</span><span class="p">])</span>
<span class="n">mask</span> <span class="o">=</span> <span class="p">(</span><span class="n">rows</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span> <span class="o">&lt;</span> <span class="n">M</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:]</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">)</span>
<span class="n">offs</span> <span class="o">=</span> <span class="n">rows</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span><span class="o">*</span><span class="n">N</span> <span class="o">+</span> <span class="n">cols</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:]</span>
<span class="n">dw</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DW</span> <span class="o">+</span> <span class="n">offs</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">db</span> <span class="o">+=</span> <span class="n">tl</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">DB</span> <span class="o">+</span> <span class="n">offs</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">,</span> <span class="n">other</span><span class="o">=</span><span class="mf">0.</span><span class="p">)</span>
<span class="n">sum_dw</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">dw</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">sum_db</span> <span class="o">=</span> <span class="n">tl</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">db</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">FINAL_DW</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">sum_dw</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">cols</span><span class="o">&lt;</span><span class="n">N</span><span class="p">)</span>
<span class="n">tl</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">FINAL_DB</span> <span class="o">+</span> <span class="n">cols</span><span class="p">,</span> <span class="n">sum_db</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">cols</span><span class="o">&lt;</span><span class="n">N</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">LayerNorm</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">normalized_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">):</span>
<span class="c1"># allocate output</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># reshape input data into 2D tensor</span>
<span class="n">x_arg</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">x_arg</span><span class="o">.</span><span class="n">shape</span>
<span class="n">mean</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">M</span><span class="p">,</span> <span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">rstd</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">M</span><span class="p">,</span> <span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="c1"># Less than 64KB per feature: enqueue fused kernel</span>
<span class="n">MAX_FUSED_SIZE</span> <span class="o">=</span> <span class="mi">65536</span> <span class="o">//</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span>
<span class="n">BLOCK_SIZE</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">MAX_FUSED_SIZE</span><span class="p">,</span> <span class="n">triton</span><span class="o">.</span><span class="n">next_power_of_2</span><span class="p">(</span><span class="n">N</span><span class="p">))</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&gt;</span> <span class="n">BLOCK_SIZE</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">RuntimeError</span><span class="p">(</span><span class="s2">&quot;This layer norm doesn&#39;t support feature dim &gt;= 64KB.&quot;</span><span class="p">)</span>
<span class="c1"># heuristics for number of warps</span>
<span class="n">num_warps</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="nb">max</span><span class="p">(</span><span class="n">BLOCK_SIZE</span> <span class="o">//</span> <span class="mi">256</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="mi">8</span><span class="p">)</span>
<span class="c1"># enqueue kernel</span>
<span class="n">_layer_norm_fwd_fused</span><span class="p">[(</span><span class="n">M</span><span class="p">,)](</span><span class="n">x_arg</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">rstd</span><span class="p">,</span>
<span class="n">x_arg</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">N</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span>
<span class="n">BLOCK_SIZE</span><span class="o">=</span><span class="n">BLOCK_SIZE</span><span class="p">,</span> <span class="n">num_warps</span><span class="o">=</span><span class="n">num_warps</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">save_for_backward</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">mean</span><span class="p">,</span> <span class="n">rstd</span><span class="p">)</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">BLOCK_SIZE</span> <span class="o">=</span> <span class="n">BLOCK_SIZE</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">num_warps</span> <span class="o">=</span> <span class="n">num_warps</span>
<span class="n">ctx</span><span class="o">.</span><span class="n">eps</span> <span class="o">=</span> <span class="n">eps</span>
<span class="k">return</span> <span class="n">y</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">dy</span><span class="p">):</span>
<span class="n">x</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span> <span class="o">=</span> <span class="n">ctx</span><span class="o">.</span><span class="n">saved_tensors</span>
<span class="c1"># heuristics for amount of parallel reduction stream for DG/DB</span>
<span class="n">N</span> <span class="o">=</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">64</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">8192</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">96</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">4096</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">128</span>
<span class="k">if</span> <span class="n">N</span> <span class="o">&lt;=</span> <span class="mi">1024</span><span class="p">:</span> <span class="n">GROUP_SIZE_M</span> <span class="o">=</span> <span class="mi">256</span>
<span class="c1"># allocate output</span>
<span class="n">locks</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">_dw</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">_db</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">dw</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">db</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty</span><span class="p">((</span><span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">w</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">dx</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">dy</span><span class="p">)</span>
<span class="c1"># enqueue kernel using forward pass heuristics</span>
<span class="c1"># also compute partial sums for DW and DB</span>
<span class="n">x_arg</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">x_arg</span><span class="o">.</span><span class="n">shape</span>
<span class="n">_layer_norm_bwd_dx_fused</span><span class="p">[(</span><span class="n">M</span><span class="p">,)](</span><span class="n">dx</span><span class="p">,</span> <span class="n">dy</span><span class="p">,</span> <span class="n">_dw</span><span class="p">,</span> <span class="n">_db</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">locks</span><span class="p">,</span>
<span class="n">x_arg</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">N</span><span class="p">,</span> <span class="n">ctx</span><span class="o">.</span><span class="n">eps</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_N</span><span class="o">=</span><span class="n">ctx</span><span class="o">.</span><span class="n">BLOCK_SIZE</span><span class="p">,</span>
<span class="n">GROUP_SIZE_M</span><span class="o">=</span><span class="n">GROUP_SIZE_M</span><span class="p">,</span>
<span class="n">num_warps</span><span class="o">=</span><span class="n">ctx</span><span class="o">.</span><span class="n">num_warps</span><span class="p">)</span>
<span class="n">grid</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">meta</span><span class="p">:</span> <span class="p">[</span><span class="n">triton</span><span class="o">.</span><span class="n">cdiv</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK_SIZE_N&#39;</span><span class="p">])]</span>
<span class="c1"># accumulate partial sums in separate kernel</span>
<span class="n">_layer_norm_bwd_dwdb</span><span class="p">[</span><span class="n">grid</span><span class="p">](</span><span class="n">_dw</span><span class="p">,</span> <span class="n">_db</span><span class="p">,</span> <span class="n">dw</span><span class="p">,</span> <span class="n">db</span><span class="p">,</span> <span class="n">GROUP_SIZE_M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_M</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span>
<span class="n">BLOCK_SIZE_N</span> <span class="o">=</span> <span class="mi">128</span><span class="p">)</span>
<span class="k">return</span> <span class="n">dx</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="n">dw</span><span class="p">,</span> <span class="n">db</span><span class="p">,</span> <span class="kc">None</span>
<span class="n">layer_norm</span> <span class="o">=</span> <span class="n">LayerNorm</span><span class="o">.</span><span class="n">apply</span>
<span class="k">def</span> <span class="nf">test_layer_norm</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">):</span>
<span class="c1"># create data</span>
<span class="n">x_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
<span class="n">w_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">x_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">)</span>
<span class="n">weight</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="o">-</span><span class="mf">2.3</span> <span class="o">+</span> <span class="mf">0.5</span><span class="o">*</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">x_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="mf">.1</span><span class="o">*</span><span class="n">torch</span><span class="o">.</span><span class="n">randn_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span><span class="o">.</span><span class="n">requires_grad_</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># forward pass</span>
<span class="n">y_tri</span> <span class="o">=</span> <span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="n">y_ref</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span>
<span class="c1"># backward pass (triton)</span>
<span class="n">y_tri</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">dx_tri</span><span class="p">,</span> <span class="n">dw_tri</span><span class="p">,</span> <span class="n">db_tri</span> <span class="o">=</span> <span class="p">[</span><span class="n">_</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">]]</span>
<span class="n">x</span><span class="o">.</span><span class="n">grad</span><span class="p">,</span> <span class="n">weight</span><span class="o">.</span><span class="n">grad</span><span class="p">,</span> <span class="n">bias</span><span class="o">.</span><span class="n">grad</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="kc">None</span>
<span class="c1"># backward pass (torch)</span>
<span class="n">y_ref</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">dx_ref</span><span class="p">,</span> <span class="n">dw_ref</span><span class="p">,</span> <span class="n">db_ref</span> <span class="o">=</span> <span class="p">[</span><span class="n">_</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">clone</span><span class="p">()</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="p">[</span><span class="n">x</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">]]</span>
<span class="c1"># compare</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">y_tri</span><span class="p">,</span> <span class="n">y_ref</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">dx_tri</span><span class="p">,</span> <span class="n">dx_ref</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">db_tri</span><span class="p">,</span> <span class="n">db_ref</span><span class="p">,</span> <span class="n">decimal</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">assert_almost_equal</span><span class="p">(</span><span class="n">dw_tri</span><span class="p">,</span> <span class="n">dw_ref</span><span class="p">,</span> <span class="n">decimal</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">perf_report</span><span class="p">(</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">Benchmark</span><span class="p">(</span>
<span class="n">x_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;N&#39;</span><span class="p">],</span>
<span class="n">x_vals</span><span class="o">=</span><span class="p">[</span><span class="mi">512</span> <span class="o">*</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">32</span><span class="p">)],</span>
<span class="n">line_arg</span><span class="o">=</span><span class="s1">&#39;provider&#39;</span><span class="p">,</span>
<span class="n">line_vals</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;triton&#39;</span><span class="p">,</span> <span class="s1">&#39;torch&#39;</span><span class="p">,</span> <span class="s1">&#39;apex&#39;</span><span class="p">],</span>
<span class="n">line_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;Triton&#39;</span><span class="p">,</span> <span class="s1">&#39;Torch&#39;</span><span class="p">,</span> <span class="s1">&#39;Apex&#39;</span><span class="p">],</span>
<span class="n">styles</span><span class="o">=</span><span class="p">[(</span><span class="s1">&#39;blue&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;green&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">),</span> <span class="p">(</span><span class="s1">&#39;orange&#39;</span><span class="p">,</span> <span class="s1">&#39;-&#39;</span><span class="p">)],</span>
<span class="n">ylabel</span><span class="o">=</span><span class="s1">&#39;GB/s&#39;</span><span class="p">,</span>
<span class="n">plot_name</span><span class="o">=</span><span class="s1">&#39;layer-norm-backward&#39;</span><span class="p">,</span>
<span class="n">args</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;M&#39;</span><span class="p">:</span> <span class="mi">4096</span><span class="p">,</span> <span class="s1">&#39;dtype&#39;</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">float16</span><span class="p">,</span> <span class="s1">&#39;mode&#39;</span><span class="p">:</span> <span class="s1">&#39;backward&#39;</span><span class="p">}</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">bench_layer_norm</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">dtype</span><span class="p">,</span> <span class="n">provider</span><span class="p">,</span> <span class="n">mode</span><span class="o">=</span><span class="s1">&#39;backward&#39;</span><span class="p">,</span><span class="n">eps</span><span class="o">=</span><span class="mf">1e-5</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">):</span>
<span class="c1"># create data</span>
<span class="n">x_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">)</span>
<span class="n">w_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">x_shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="p">)</span>
<span class="n">weight</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">bias</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="n">w_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="o">-</span><span class="mf">2.3</span> <span class="o">+</span> <span class="mf">0.5</span><span class="o">*</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">x_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">dtype</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">dy</span> <span class="o">=</span> <span class="mf">.1</span><span class="o">*</span><span class="n">torch</span><span class="o">.</span><span class="n">randn_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span><span class="o">.</span><span class="n">requires_grad_</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="c1"># utility functions</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;triton&#39;</span><span class="p">:</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;torch&#39;</span><span class="p">:</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">functional</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">w_shape</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="n">eps</span><span class="p">)</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;apex&#39;</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">apex</span>
<span class="n">apex_layer_norm</span> <span class="o">=</span> <span class="n">apex</span><span class="o">.</span><span class="n">normalization</span><span class="o">.</span><span class="n">FusedLayerNorm</span><span class="p">(</span><span class="n">w_shape</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">device</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="n">y_fwd</span> <span class="o">=</span> <span class="k">lambda</span><span class="p">:</span> <span class="n">apex_layer_norm</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># forward pass</span>
<span class="k">if</span> <span class="n">mode</span> <span class="o">==</span> <span class="s1">&#39;forward&#39;</span><span class="p">:</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">2</span><span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span><span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span><span class="o">/</span><span class="n">ms</span><span class="o">*</span><span class="mf">1e-6</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="n">y_fwd</span><span class="p">,</span> <span class="n">rep</span><span class="o">=</span><span class="mi">500</span><span class="p">)</span>
<span class="c1"># backward pass</span>
<span class="k">if</span> <span class="n">mode</span> <span class="o">==</span> <span class="s1">&#39;backward&#39;</span><span class="p">:</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">3</span><span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">numel</span><span class="p">()</span><span class="o">*</span><span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span><span class="o">/</span><span class="n">ms</span><span class="o">*</span><span class="mf">1e-6</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">y_fwd</span><span class="p">()</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">y</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">dy</span><span class="p">,</span> <span class="n">retain_graph</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="n">grad_to_none</span><span class="o">=</span><span class="p">[</span><span class="n">x</span><span class="p">],</span> <span class="n">rep</span><span class="o">=</span><span class="mi">500</span><span class="p">)</span>
<span class="k">return</span> <span class="n">gbps</span><span class="p">(</span><span class="n">ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">max_ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">min_ms</span><span class="p">)</span>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.732 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>
</div>
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/ae7fff29e1b574187bc930ed94bcc353/05-layer-norm.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">05-layer-norm.ipynb</span></code></a></p>
</div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../../python-api/triton.html" class="btn btn-neutral float-right" title="triton" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
<a href="04-low-memory-dropout.html" class="btn btn-neutral float-left" title="Low-Memory Dropout" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2020, Philippe Tillet.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<div class="rst-versions" data-toggle="rst-versions" role="note" aria-label="versions">
<span class="rst-current-version" data-toggle="rst-current-version">
<span class="fa fa-book"> Other Versions</span>
v: v1.1.2
<span class="fa fa-caret-down"></span>
</span>
<div class="rst-other-versions">
<dl>
<dt>Tags</dt>
<dd><a href="05-layer-norm.html">v1.1.2</a></dd>
</dl>
<dl>
<dt>Branches</dt>
<dd><a href="../../../master/index.html">master</a></dd>
</dl>
</div>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>