Files
triton/python/tutorials/01-vector-add.py
2021-07-27 12:38:49 -07:00

181 lines
7.5 KiB
Python

"""
Vector Addition
=================
In this tutorial, you will write a simple vector addition using Triton and learn about:
- The basic syntax of the Triton programming language
- The best practices for creating PyTorch custom operators using the :code:`triton.kernel` Python API
- The best practices for validating and benchmarking custom ops against native reference implementations
"""
# %%
# Compute Kernel
# --------------------------
#
# Each compute kernel is declared using the :code:`__global__` attribute, and executed many times in parallel
# on different chunks of data (See the `Single Program, Multiple Data <(https://en.wikipedia.org/wiki/SPMD>`_)
# programming model for more details).
#
# .. code-block:: C
#
# __global__ void add(float* z, float* x, float* y, int N){
# // The `get_program_id(i)` returns the i-th coordinate
# // of the program in the overaching SPMD context
# // (a.k.a launch grid). This is what allows us to process
# // different chunks of data in parallel.
# // For those similar with CUDA, `get_program_id({0,1,2})`
# // is similar to blockIdx.{x,y,z}
# int pid = get_program_id(0);
# // In Triton, arrays are first-class citizen. In other words,
# // they are primitives data-types and are -- contrary to C and
# // CUDA -- not implemented as pointers to contiguous chunks of
# // memory.
# // In the few lines below, we create an array of `BLOCK` pointers
# // whose memory values are, e.g.:
# // [z + pid*BLOCK + 0, z + pid*BLOCK + 1, ..., z + pid*BLOCK + BLOCK - 1]
# // Note: here BLOCK is expected to be a pre-processor macro defined at compile-time
# int offset[BLOCK] = pid * BLOCK + 0 ... BLOCK;
# float* pz [BLOCK] = z + offset;
# float* px [BLOCK] = x + offset;
# float* py [BLOCK] = y + offset;
# // Simple element-wise control-flow for load/store operations can
# // be achieved using the the ternary operator `cond ? val_true : val_false`
# // or the conditional dereferencing operator `*?(cond)ptr
# // Here, we make sure that we do not access memory out-of-bounds when we
# // write-back `z`
# bool check[BLOCK] = offset < N;
# *?(check)pz = *?(check)px + *?(check)py;
# }
#
# The existence of arrays as a primitive data-type for Triton comes with a number of advantages that are highlighted in the `MAPL'2019 Triton paper <http://www.eecs.harvard.edu/~htk/publication/2019-mapl-tillet-kung-cox.pdf>`_.
# %%
# Torch Bindings
# --------------------------
# The only thing that matters when it comes to Triton and Torch is the :code:`triton.kernel` class. This allows you to transform the above C-like function into a callable python object that can be used to modify :code:`torch.tensor` objects. To create a :code:`triton.kernel`, you only need three things:
#
# - :code:`source: string`: the source-code of the kernel you want to create
# - :code:`device: torch.device`: the device you want to compile this code for
# - :code:`defines: dict`: the set of macros that you want the pre-processor to `#define` for you
import torch
import triton
# source-code for Triton compute kernel
# here we just copy-paste the above code without the extensive comments.
# you may prefer to store it in a .c file and load it from there instead.
_src = """
__global__ void add(float* z, float* x, float* y, int N){
// program id
int pid = get_program_id(0);
// create arrays of pointers
int offset[BLOCK] = pid * BLOCK + 0 ... BLOCK;
float* pz[BLOCK] = z + offset;
float* px[BLOCK] = x + offset;
float* py[BLOCK] = y + offset;
// bounds checking
bool check[BLOCK] = offset < N;
// write-back
*?(check)pz = *?(check)px + *?(check)py;
}
"""
# This function returns a callable `triton.kernel` object created from the above source code.
# For portability, we maintain a cache of kernels for different `torch.device`
# We compile the kernel with -DBLOCK=1024
def make_add_kernel(device):
cache = make_add_kernel.cache
if device not in cache:
defines = {'BLOCK': 1024}
cache[device] = triton.kernel(_src, device=device, defines=defines)
return cache[device]
make_add_kernel.cache = dict()
# This is a standard torch custom autograd Function;
# The only difference is that we can now use the above kernel in the `forward` and `backward` functions.`
class _add(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
# constraints of the op
assert x.dtype == torch.float32
# *allocate output*
z = torch.empty_like(x)
# *create launch grid*:
# this is a function which takes compilation parameters `opt`
# as input and returns a tuple of int (i.e., launch grid) for the kernel.
# triton.cdiv is a shortcut for ceil division:
# triton.cdiv(a, b) = (a + b - 1) // b
N = z.shape[0]
grid = lambda opt: (triton.cdiv(N, opt.BLOCK), )
# *launch kernel*:
# pointer to the data of torch tensors can be retrieved with
# the `.data_ptr()` method
kernel = make_add_kernel(z.device)
kernel(z.data_ptr(), x.data_ptr(), y.data_ptr(), N, grid=grid)
return z
# Just like we standard PyTorch ops We use the :code:`.apply` method to create a callable object for our function
add = _add.apply
# %%
# We can now use the above function to compute the sum of two `torch.tensor` objects:
# %%
# Unit Test
# -----------
#
# Of course, the first thing that we should check is that whether kernel is correct. This is pretty easy to test, as shown below:
torch.manual_seed(0)
x = torch.rand(98432, device='cuda')
y = torch.rand(98432, device='cuda')
za = x + y
zb = add(x, y)
print(za)
print(zb)
print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(za - zb))}')
# %%
# Seems like we're good to go!
# %%
# Benchmark
# -----------
# We can now benchmark our custom op for vectors of increasing sizes to get a sense of how it does relative to PyTorch.
# To make things easier, Triton has a set of built-in utilities that allow us to concisely plot the performance of our custom op.
# for different problem sizes.
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['size'], # argument names to use as an x-axis for the plot
x_vals=[2**i for i in range(12, 28, 1)], # different possible values for `x_name`
x_log=True, # x axis is logarithmic
y_name='provider', # argument name whose value corresponds to a different line in the plot
y_vals=['torch', 'triton'], # possible keys for `y_name`
y_lines=["Torch", "Triton"], # label name for the lines
ylabel="GB/s", # label name for the y-axis
plot_name="vector-add-performance", # name for the plot. Used also as a file name for saving the plot.
args={} # values for function arguments not in `x_names` and `y_name`
)
)
def benchmark(size, provider):
x = torch.rand(size, device='cuda', dtype=torch.float32)
y = torch.rand(size, device='cuda', dtype=torch.float32)
if provider == 'torch':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: x + y)
if provider == 'triton':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: add(x, y))
gbps = lambda ms: 12 * size / ms * 1e-6
return gbps(ms), gbps(max_ms), gbps(min_ms)
# %%
# We can now run the decorated function above. Pass `show_plots=True` to see the plots and/or
# `save_path='/path/to/results/' to save them to disk along with raw CSV data
benchmark.run(show_plots=True)