Files
triton/python/autotune/pysrc/model.py

62 lines
2.1 KiB
Python

from sklearn import tree
from sklearn import ensemble
from sklearn.grid_search import GridSearchCV
import numpy as np
def gmean(a, axis=0, dtype=None):
if not isinstance(a, np.ndarray): # if not an ndarray object attempt to convert it
log_a = np.log(np.array(a, dtype=dtype))
elif dtype: # Must change the default dtype allowing array type
if isinstance(a,np.ma.MaskedArray):
log_a = np.log(np.ma.asarray(a, dtype=dtype))
else:
log_a = np.log(np.asarray(a, dtype=dtype))
else:
log_a = np.log(a)
return np.exp(log_a.mean(axis=axis))
def nrmse(y_ground, y):
N = y.size
rmsd = np.sqrt(np.sum((y_ground - y)**2)/N)
return rmsd/(np.max(y_ground) - np.min(y_ground))
def train_model(X, Y, profiles, metric):
p = np.random.permutation(X.shape[0])
X = X[p,:]
Y = Y[p,:]
#Normalize
Ymax = np.max(Y)
Y = Y/Ymax
#Train the model
cut = int(0.95*X.shape[0])
XTr, YTr = X[:cut,:], Y[:cut,:]
XCv, YCv = X[cut:,:], Y[cut:,:]
nrmses = {}
for N in range(1,10):
for depth in range(1,5):
clf = ensemble.RandomForestRegressor(N, max_depth=depth).fit(XTr, YTr)
t = np.argmin(clf.predict(XCv), axis = 1)
y = np.array([YCv[i,t[i]] for i in range(t.size)])
nrmses[clf] = nrmse(np.min(YCv[:,:], axis=1), y)
clf = min(nrmses, key=nrmses.get)
t = np.argmin(clf.predict(XCv), axis = 1)
s = np.array([y[0]/y[k] for y,k in zip(YCv, t)])
tt = np.argmin(YCv, axis = 1)
ss = np.array([y[0]/y[k] for y,k in zip(YCv, tt)])
p5 = lambda a: np.percentile(a, 5)
p25 = lambda a: np.percentile(a, 25)
p50 = lambda a: np.percentile(a, 50)
p75 = lambda a: np.percentile(a, 75)
p95 = lambda a: np.percentile(a, 95)
print("Percentile :\t 5 \t 25 \t 50 \t 75 \t 95")
print("Testing speedup:\t %.2f\t %.2f\t %.2f\t %.2f\t %.3f"%(p5(s), p25(s), p50(s), p75(s), p95(s)))
print("Optimal speedup:\t %.2f\t %.2f\t %.2f\t %.2f\t %.3f"%(p5(ss), p25(ss), p50(ss), p75(ss), p95(ss)))
print clf
return clf