148 lines
5.9 KiB
C++
148 lines
5.9 KiB
C++
|
|
#include "common.hpp"
|
|
#include "viennacl/vector.hpp"
|
|
|
|
#include "atidlas/templates/vector_axpy_template.hpp"
|
|
#include "atidlas/execute.hpp"
|
|
|
|
template<typename NumericT, class XType, class YType, class ZType>
|
|
int test_vectors(NumericT epsilon, atidlas::vector_axpy_parameters const & vector_axpy_parameters,
|
|
XType & cx, YType & cy, ZType & cz)
|
|
{
|
|
int failure_count = 0;
|
|
ZType buffer = cz;
|
|
|
|
NumericT a = 3.12, b = 3.5;
|
|
viennacl::scalar<NumericT> da(a), db(b);
|
|
|
|
viennacl::vector<NumericT> xtmp(cx.internal_size());
|
|
viennacl::vector<NumericT> ytmp(cy.internal_size());
|
|
viennacl::vector<NumericT> ztmp(cz.internal_size());
|
|
|
|
typename vector_maker<XType>::result_type x = vector_maker<XType>::make(xtmp, cx);
|
|
typename vector_maker<YType>::result_type y = vector_maker<YType>::make(ytmp, cy);
|
|
typename vector_maker<ZType>::result_type z = vector_maker<ZType>::make(ztmp, cz);
|
|
|
|
|
|
#define RUN_TEST_VECTOR_AXPY(NAME, CPU_LOOP, GPU_STATEMENT) \
|
|
std::cout << NAME "..." << std::flush;\
|
|
for(int_t i = 0 ; i < cz.size() ; ++i)\
|
|
CPU_LOOP;\
|
|
atidlas::execute(atidlas::vector_axpy_template(vector_axpy_parameters),\
|
|
GPU_STATEMENT,\
|
|
viennacl::ocl::current_context(), true);\
|
|
viennacl::copy(z, buffer);\
|
|
if(failure_vector(cz, buffer, epsilon))\
|
|
{\
|
|
failure_count++;\
|
|
std::cout << " [Failure!]" << std::endl;\
|
|
}\
|
|
else\
|
|
std::cout << std::endl;
|
|
|
|
RUN_TEST_VECTOR_AXPY("z = x", cz[i] = cx[i], viennacl::scheduler::statement(z, viennacl::op_assign(), x))
|
|
RUN_TEST_VECTOR_AXPY("z = x + y", cz[i] = cx[i] + cy[i], viennacl::scheduler::statement(z, viennacl::op_assign(), x + y))
|
|
RUN_TEST_VECTOR_AXPY("z = x - y", cz[i] = cx[i] - cy[i], viennacl::scheduler::statement(z, viennacl::op_assign(), x - y))
|
|
RUN_TEST_VECTOR_AXPY("z = x + y + z", cz[i] = cx[i] + cy[i] + cz[i], viennacl::scheduler::statement(z, viennacl::op_assign(), x + y + z))
|
|
|
|
RUN_TEST_VECTOR_AXPY("z = a*x", cz[i] = a*cx[i], viennacl::scheduler::statement(z, viennacl::op_assign(), a*x))
|
|
RUN_TEST_VECTOR_AXPY("z = da*x", cz[i] = a*cx[i], viennacl::scheduler::statement(z, viennacl::op_assign(), da*x))
|
|
RUN_TEST_VECTOR_AXPY("z = a*x + b*y", cz[i] = a*cx[i] + b*cy[i], viennacl::scheduler::statement(z, viennacl::op_assign(), a*x + b*y))
|
|
RUN_TEST_VECTOR_AXPY("z = da*x + b*y", cz[i] = a*cx[i] + b*cy[i], viennacl::scheduler::statement(z, viennacl::op_assign(), da*x + b*y))
|
|
RUN_TEST_VECTOR_AXPY("z = a*x + db*y", cz[i] = a*cx[i] + b*cy[i], viennacl::scheduler::statement(z, viennacl::op_assign(), a*x + db*y))
|
|
RUN_TEST_VECTOR_AXPY("z = da*x + db*y", cz[i] = a*cx[i] + b*cy[i], viennacl::scheduler::statement(z, viennacl::op_assign(), da*x + db*y))
|
|
#undef RUN_TEST_VECTOR_AXPY
|
|
|
|
return failure_count;
|
|
}
|
|
|
|
template<typename NumericT>
|
|
int test_impl(NumericT epsilon)
|
|
{
|
|
int_t N = 24378;
|
|
int x_start = 4, y_start = 7, z_start = 15;
|
|
int x_stride = 5, y_stride = 8, z_stride = 12;
|
|
viennacl::range xr(x_start, N + x_start), yr(y_start, N + y_start), zr(z_start, N + z_start);
|
|
viennacl::slice xs(x_start, x_stride, N), ys(y_start, y_stride, N), zs(z_start, z_stride, N);
|
|
|
|
simple_vector<NumericT> x_vector(N), y_vector(N), z_vector(N);
|
|
init_rand(x_vector);
|
|
init_rand(y_vector);
|
|
init_rand(z_vector);
|
|
|
|
simple_vector<NumericT> x_range_holder(N + x_start);
|
|
simple_vector<NumericT> x_slice_holder(x_start + N*x_stride);
|
|
init_rand(x_range_holder);
|
|
init_rand(x_slice_holder);
|
|
simple_vector_range< simple_vector<NumericT> > x_range(x_range_holder, xr);
|
|
simple_vector_slice< simple_vector<NumericT> > x_slice(x_slice_holder, xs);
|
|
|
|
simple_vector<NumericT> y_range_holder(N + y_start);
|
|
simple_vector<NumericT> y_slice_holder(y_start + N*y_stride);
|
|
init_rand(y_range_holder);
|
|
init_rand(y_slice_holder);
|
|
simple_vector_range< simple_vector<NumericT> > y_range(y_range_holder, yr);
|
|
simple_vector_slice< simple_vector<NumericT> > y_slice(y_slice_holder, ys);
|
|
|
|
simple_vector<NumericT> z_range_holder(N + z_start);
|
|
simple_vector<NumericT> z_slice_holder(z_start + N*z_stride);
|
|
init_rand(z_range_holder);
|
|
init_rand(z_slice_holder);
|
|
simple_vector_range< simple_vector<NumericT> > z_range(z_range_holder, zr);
|
|
simple_vector_slice< simple_vector<NumericT> > z_slice(z_slice_holder, zs);
|
|
|
|
int_t failure_count = 0;
|
|
|
|
atidlas::vector_axpy_parameters vector_axpy_parameters(4, 32, 128, atidlas::FETCH_FROM_GLOBAL_CONTIGUOUS);
|
|
|
|
|
|
#define TEST_OPERATIONS(XTYPE, YTYPE, ZTYPE)\
|
|
std::cout << "> x : " #XTYPE " | y : " #YTYPE " | z : " #ZTYPE << std::endl;\
|
|
failure_count += test_vectors(epsilon, vector_axpy_parameters, x_ ## XTYPE, y_ ## YTYPE, z_ ## ZTYPE);\
|
|
|
|
TEST_OPERATIONS(vector, vector, vector)
|
|
TEST_OPERATIONS(vector, vector, range)
|
|
TEST_OPERATIONS(vector, vector, slice)
|
|
TEST_OPERATIONS(vector, range, vector)
|
|
TEST_OPERATIONS(vector, range, range)
|
|
TEST_OPERATIONS(vector, range, slice)
|
|
TEST_OPERATIONS(vector, slice, vector)
|
|
TEST_OPERATIONS(vector, slice, range)
|
|
TEST_OPERATIONS(vector, slice, slice)
|
|
|
|
TEST_OPERATIONS(range, vector, vector)
|
|
TEST_OPERATIONS(range, vector, range)
|
|
TEST_OPERATIONS(range, vector, slice)
|
|
TEST_OPERATIONS(range, range, vector)
|
|
TEST_OPERATIONS(range, range, range)
|
|
TEST_OPERATIONS(range, range, slice)
|
|
TEST_OPERATIONS(range, slice, vector)
|
|
TEST_OPERATIONS(range, slice, range)
|
|
TEST_OPERATIONS(range, slice, slice)
|
|
|
|
TEST_OPERATIONS(slice, vector, vector)
|
|
TEST_OPERATIONS(slice, vector, range)
|
|
TEST_OPERATIONS(slice, vector, slice)
|
|
TEST_OPERATIONS(slice, range, vector)
|
|
TEST_OPERATIONS(slice, range, range)
|
|
TEST_OPERATIONS(slice, range, slice)
|
|
TEST_OPERATIONS(slice, slice, vector)
|
|
TEST_OPERATIONS(slice, slice, range)
|
|
TEST_OPERATIONS(slice, slice, slice)
|
|
|
|
return failure_count;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
int n_failures = 0;
|
|
std::cout << ">> float" << std::endl;
|
|
n_failures += test_impl<float>(1e-5);
|
|
std::cout << ">> double" << std::endl;
|
|
n_failures += test_impl<double>(1e-9);
|
|
|
|
if(n_failures>0)
|
|
return EXIT_FAILURE;
|
|
return EXIT_SUCCESS;
|
|
}
|