Files
triton/tutorials/02-fused-softmax.html
2021-03-06 03:09:03 -05:00

705 lines
37 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Fused Softmax &mdash; Triton documentation</title>
<link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../" src="../_static/documentation_options.js"></script>
<script src="../_static/jquery.js"></script>
<script src="../_static/underscore.js"></script>
<script src="../_static/doctools.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<script type="text/javascript" src="../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="prev" title="Vector Addition" href="01-vector-add.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home"> Triton
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Installation Instructions</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/packaged-binaries.html">Packaged Binaries</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/from-source.html">From Source</a></li>
</ul>
<p class="caption"><span class="caption-text">Tutorials</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="01-vector-add.html">Vector Addition</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Fused Softmax</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#Writing-the-Compute-Kernel">Writing the Compute Kernel</a></li>
<li class="toctree-l2"><a class="reference internal" href="#Writing-the-Torch-bindings">Writing the Torch bindings</a></li>
<li class="toctree-l2"><a class="reference internal" href="#Writing-a-Unit-Test">Writing a Unit Test</a></li>
<li class="toctree-l2"><a class="reference internal" href="#Writing-a-Benchmark">Writing a Benchmark</a></li>
</ul>
</li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">Triton</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html" class="icon icon-home"></a> &raquo;</li>
<li>Fused Softmax</li>
<li class="wy-breadcrumbs-aside">
<a href="../_sources/tutorials/02-fused-softmax.ipynb.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<style>
/* CSS for nbsphinx extension */
/* remove conflicting styling from Sphinx themes */
div.nbinput.container div.prompt *,
div.nboutput.container div.prompt *,
div.nbinput.container div.input_area pre,
div.nboutput.container div.output_area pre,
div.nbinput.container div.input_area .highlight,
div.nboutput.container div.output_area .highlight {
border: none;
padding: 0;
margin: 0;
box-shadow: none;
}
div.nbinput.container > div[class*=highlight],
div.nboutput.container > div[class*=highlight] {
margin: 0;
}
div.nbinput.container div.prompt *,
div.nboutput.container div.prompt * {
background: none;
}
div.nboutput.container div.output_area .highlight,
div.nboutput.container div.output_area pre {
background: unset;
}
div.nboutput.container div.output_area div.highlight {
color: unset; /* override Pygments text color */
}
/* avoid gaps between output lines */
div.nboutput.container div[class*=highlight] pre {
line-height: normal;
}
/* input/output containers */
div.nbinput.container,
div.nboutput.container {
display: -webkit-flex;
display: flex;
align-items: flex-start;
margin: 0;
width: 100%;
}
@media (max-width: 540px) {
div.nbinput.container,
div.nboutput.container {
flex-direction: column;
}
}
/* input container */
div.nbinput.container {
padding-top: 5px;
}
/* last container */
div.nblast.container {
padding-bottom: 5px;
}
/* input prompt */
div.nbinput.container div.prompt pre {
color: #307FC1;
}
/* output prompt */
div.nboutput.container div.prompt pre {
color: #BF5B3D;
}
/* all prompts */
div.nbinput.container div.prompt,
div.nboutput.container div.prompt {
width: 4.5ex;
padding-top: 5px;
position: relative;
user-select: none;
}
div.nbinput.container div.prompt > div,
div.nboutput.container div.prompt > div {
position: absolute;
right: 0;
margin-right: 0.3ex;
}
@media (max-width: 540px) {
div.nbinput.container div.prompt,
div.nboutput.container div.prompt {
width: unset;
text-align: left;
padding: 0.4em;
}
div.nboutput.container div.prompt.empty {
padding: 0;
}
div.nbinput.container div.prompt > div,
div.nboutput.container div.prompt > div {
position: unset;
}
}
/* disable scrollbars on prompts */
div.nbinput.container div.prompt pre,
div.nboutput.container div.prompt pre {
overflow: hidden;
}
/* input/output area */
div.nbinput.container div.input_area,
div.nboutput.container div.output_area {
-webkit-flex: 1;
flex: 1;
overflow: auto;
}
@media (max-width: 540px) {
div.nbinput.container div.input_area,
div.nboutput.container div.output_area {
width: 100%;
}
}
/* input area */
div.nbinput.container div.input_area {
border: 1px solid #e0e0e0;
border-radius: 2px;
/*background: #f5f5f5;*/
}
/* override MathJax center alignment in output cells */
div.nboutput.container div[class*=MathJax] {
text-align: left !important;
}
/* override sphinx.ext.imgmath center alignment in output cells */
div.nboutput.container div.math p {
text-align: left;
}
/* standard error */
div.nboutput.container div.output_area.stderr {
background: #fdd;
}
/* ANSI colors */
.ansi-black-fg { color: #3E424D; }
.ansi-black-bg { background-color: #3E424D; }
.ansi-black-intense-fg { color: #282C36; }
.ansi-black-intense-bg { background-color: #282C36; }
.ansi-red-fg { color: #E75C58; }
.ansi-red-bg { background-color: #E75C58; }
.ansi-red-intense-fg { color: #B22B31; }
.ansi-red-intense-bg { background-color: #B22B31; }
.ansi-green-fg { color: #00A250; }
.ansi-green-bg { background-color: #00A250; }
.ansi-green-intense-fg { color: #007427; }
.ansi-green-intense-bg { background-color: #007427; }
.ansi-yellow-fg { color: #DDB62B; }
.ansi-yellow-bg { background-color: #DDB62B; }
.ansi-yellow-intense-fg { color: #B27D12; }
.ansi-yellow-intense-bg { background-color: #B27D12; }
.ansi-blue-fg { color: #208FFB; }
.ansi-blue-bg { background-color: #208FFB; }
.ansi-blue-intense-fg { color: #0065CA; }
.ansi-blue-intense-bg { background-color: #0065CA; }
.ansi-magenta-fg { color: #D160C4; }
.ansi-magenta-bg { background-color: #D160C4; }
.ansi-magenta-intense-fg { color: #A03196; }
.ansi-magenta-intense-bg { background-color: #A03196; }
.ansi-cyan-fg { color: #60C6C8; }
.ansi-cyan-bg { background-color: #60C6C8; }
.ansi-cyan-intense-fg { color: #258F8F; }
.ansi-cyan-intense-bg { background-color: #258F8F; }
.ansi-white-fg { color: #C5C1B4; }
.ansi-white-bg { background-color: #C5C1B4; }
.ansi-white-intense-fg { color: #A1A6B2; }
.ansi-white-intense-bg { background-color: #A1A6B2; }
.ansi-default-inverse-fg { color: #FFFFFF; }
.ansi-default-inverse-bg { background-color: #000000; }
.ansi-bold { font-weight: bold; }
.ansi-underline { text-decoration: underline; }
div.nbinput.container div.input_area div[class*=highlight] > pre,
div.nboutput.container div.output_area div[class*=highlight] > pre,
div.nboutput.container div.output_area div[class*=highlight].math,
div.nboutput.container div.output_area.rendered_html,
div.nboutput.container div.output_area > div.output_javascript,
div.nboutput.container div.output_area:not(.rendered_html) > img{
padding: 5px;
margin: 0;
}
/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */
div.nbinput.container div.input_area > div[class^='highlight'],
div.nboutput.container div.output_area > div[class^='highlight']{
overflow-y: hidden;
}
/* hide copybtn icon on prompts (needed for 'sphinx_copybutton') */
.prompt a.copybtn {
display: none;
}
/* Some additional styling taken form the Jupyter notebook CSS */
div.rendered_html table {
border: none;
border-collapse: collapse;
border-spacing: 0;
color: black;
font-size: 12px;
table-layout: fixed;
}
div.rendered_html thead {
border-bottom: 1px solid black;
vertical-align: bottom;
}
div.rendered_html tr,
div.rendered_html th,
div.rendered_html td {
text-align: right;
vertical-align: middle;
padding: 0.5em 0.5em;
line-height: normal;
white-space: normal;
max-width: none;
border: none;
}
div.rendered_html th {
font-weight: bold;
}
div.rendered_html tbody tr:nth-child(odd) {
background: #f5f5f5;
}
div.rendered_html tbody tr:hover {
background: rgba(66, 165, 245, 0.2);
}
/* CSS overrides for sphinx_rtd_theme */
/* 24px margin */
.nbinput.nblast.container,
.nboutput.nblast.container {
margin-bottom: 19px; /* padding has already 5px */
}
/* ... except between code cells! */
.nblast.container + .nbinput.container {
margin-top: -19px;
}
.admonition > p:before {
margin-right: 4px; /* make room for the exclamation icon */
}
/* Fix math alignment, see https://github.com/rtfd/sphinx_rtd_theme/pull/686 */
.math {
text-align: unset;
}
</style>
<div class="section" id="Fused-Softmax">
<h1>Fused Softmax<a class="headerlink" href="#Fused-Softmax" title="Permalink to this headline"></a></h1>
<p>Custom GPU kernels for elementwise additions are educationally valuable but wont get you very far in practice. Let us consider instead the case of a simple (numerically stabilized) softmax operation:</p>
<div class="nbinput nblast docutils container">
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[1]:
</pre></div>
</div>
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre>
<span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="c1"># Compute the row-wise softmax of x \in R^{M \times N}</span>
<span class="k">def</span> <span class="nf">naive_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="c1"># read MN elements ; write M elements</span>
<span class="n">x_max</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1"># read 2MN elements ; write MN elements</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">x_max</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span>
<span class="c1"># read MN elements ; write MN elements</span>
<span class="n">numerator</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># read MN elements ; write M elements</span>
<span class="n">denominator</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">numerator</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># read 2MN elements ; write MN elements</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">numerator</span> <span class="o">/</span> <span class="n">denominator</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span>
<span class="c1"># in total: read 7MN elements ; wrote 3MN + 2M elements</span>
<span class="k">return</span> <span class="n">ret</span>
</pre></div>
</div>
</div>
<p>When implemented naively in pytorch, computing <span class="math notranslate nohighlight">\(y\)</span> requires reading <span class="math notranslate nohighlight">\(7MN\)</span> elements from DRAM and writing back <span class="math notranslate nohighlight">\(3MN + 2M\)</span> elements.</p>
<p>Instead, we want to write a custom “fused” pytorch operators that only reads X once and does all the necessary computations on-chip. This would require reading and writing back only <span class="math notranslate nohighlight">\(MN\)</span> bytes, so we could expect a theoretical speed-up of 5x. In practice, though, we expect less because our kernel will spend some time computing exponentials and moving data around in shared memory.</p>
<div class="section" id="Writing-the-Compute-Kernel">
<h2>Writing the Compute Kernel<a class="headerlink" href="#Writing-the-Compute-Kernel" title="Permalink to this headline"></a></h2>
<p>Our softmax kernel works as follows: each program loads a row of X and writes back a normalized row of Y. Note that one important limitation of Triton is that each block must have a power-of-two number of elements, which means that we need to guard the memory operations properly if we want to handle any possible input shapes:</p>
<div class="highlight-c notranslate"><div class="highlight"><pre><span></span><span class="n">__global__</span> <span class="kt">void</span> <span class="n">softmax</span><span class="p">(</span><span class="kt">float</span><span class="o">*</span> <span class="n">Y</span><span class="p">,</span> <span class="kt">float</span><span class="o">*</span> <span class="n">X</span><span class="p">,</span> <span class="kt">int</span> <span class="n">stride_xm</span><span class="p">,</span> <span class="kt">int</span> <span class="n">stride_ym</span><span class="p">,</span> <span class="kt">int</span> <span class="n">M</span><span class="p">,</span> <span class="kt">int</span> <span class="n">N</span><span class="p">){</span>
<span class="c1">// row index</span>
<span class="kt">int</span> <span class="n">m</span> <span class="o">=</span> <span class="n">get_program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span>
<span class="c1">// column indices</span>
<span class="kt">int</span> <span class="n">n</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span> <span class="p">...</span> <span class="n">BLOCK</span><span class="p">;</span>
<span class="c1">// the memory address of all the elements</span>
<span class="c1">// that we want to load can be computed as follows</span>
<span class="kt">float</span><span class="o">*</span> <span class="n">px</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">X</span> <span class="o">+</span> <span class="n">m</span><span class="o">*</span><span class="n">stride_xm</span> <span class="o">+</span> <span class="n">n</span><span class="p">;</span>
<span class="c1">// because BLOCK has to be a power of two</span>
<span class="c1">// (per Triton-C specs), it is important</span>
<span class="c1">// to guard each memory operation with predicates</span>
<span class="c1">// or we will read out of bounds</span>
<span class="kt">bool</span> <span class="n">check</span><span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">n</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">;</span>
<span class="kt">float</span> <span class="n">x</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">check</span> <span class="o">?</span> <span class="o">*</span><span class="nl">px</span> <span class="p">:</span> <span class="o">-</span><span class="n">F32_INFINITY</span><span class="p">;</span>
<span class="c1">// syntax for reduction in Triton is:</span>
<span class="c1">// x[..., OPERATOR, ...]</span>
<span class="c1">// ^</span>
<span class="c1">// index</span>
<span class="c1">// The operators currently supported are {min, max, +}</span>
<span class="kt">float</span> <span class="n">z</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">x</span><span class="p">[</span><span class="n">max</span><span class="p">];</span>
<span class="c1">// The exponential in Triton is fast but approximate</span>
<span class="c1">// (i.e., like __expf in CUDA)</span>
<span class="kt">float</span> <span class="n">num</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">);</span>
<span class="kt">float</span> <span class="n">denom</span> <span class="o">=</span> <span class="n">num</span><span class="p">[</span><span class="o">+</span><span class="p">];</span>
<span class="c1">// The result of the reduction is now stored in y</span>
<span class="kt">float</span> <span class="n">y</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">num</span> <span class="o">/</span> <span class="n">denom</span><span class="p">;</span>
<span class="c1">// We write it back</span>
<span class="kt">float</span><span class="o">*</span> <span class="n">py</span> <span class="p">[</span><span class="n">BLOCK</span><span class="p">]</span> <span class="o">=</span> <span class="n">Y</span> <span class="o">+</span> <span class="n">m</span><span class="o">*</span><span class="n">stride_ym</span> <span class="o">+</span> <span class="n">n</span><span class="p">;</span>
<span class="o">*?</span><span class="p">(</span><span class="n">check</span><span class="p">)</span><span class="n">py</span> <span class="o">=</span> <span class="n">y</span><span class="p">;</span>
<span class="p">}</span>
</pre></div>
</div>
</div>
<div class="section" id="Writing-the-Torch-bindings">
<h2>Writing the Torch bindings<a class="headerlink" href="#Writing-the-Torch-bindings" title="Permalink to this headline"></a></h2>
<div class="nbinput nblast docutils container">
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[2]:
</pre></div>
</div>
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre>
<span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">triton</span>
<span class="c1"># source-code for Triton compute kernel</span>
<span class="n">_src</span> <span class="o">=</span> <span class="s2">&quot;&quot;&quot;</span>
<span class="s2">__global__ void softmax(float* Y, float* X, int stride_ym, int stride_xm, int M, int N){</span>
<span class="s2"> int m = get_program_id(0);</span>
<span class="s2"> int n [BLOCK] = 0 ... BLOCK;</span>
<span class="s2"> float* px [BLOCK] = X + m*stride_xm + n;</span>
<span class="s2"> bool check[BLOCK] = n &lt; N;</span>
<span class="s2"> float x [BLOCK] = check ? *px : -F32_INFINITY;</span>
<span class="s2"> float z [BLOCK] = x - x[max];</span>
<span class="s2"> float num [BLOCK] = exp(z);</span>
<span class="s2"> float denom = num[+];</span>
<span class="s2"> float y [BLOCK] = num / denom;</span>
<span class="s2"> float* py [BLOCK] = Y + m*stride_ym + n;</span>
<span class="s2"> *?(check)py = y;</span>
<span class="s2">}</span>
<span class="s2">&quot;&quot;&quot;</span>
<span class="c1"># We need to make sure that BLOCK is the smallest power of two</span>
<span class="c1"># greater than the number of rows N of the input matrix.</span>
<span class="c1"># Different values of BLOCK will result in different kernels</span>
<span class="k">def</span> <span class="nf">next_power_of_2</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<span class="n">n</span> <span class="o">-=</span> <span class="mi">1</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">1</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">2</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">4</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">8</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">16</span>
<span class="n">n</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="k">return</span> <span class="n">n</span>
<span class="n">_kernels</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">make_kernel</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">device</span><span class="p">):</span>
<span class="n">BLOCK</span> <span class="o">=</span> <span class="n">next_power_of_2</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
<span class="n">key</span> <span class="o">=</span> <span class="p">(</span><span class="n">BLOCK</span><span class="p">,</span> <span class="n">device</span><span class="p">)</span>
<span class="k">if</span> <span class="n">key</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">_kernels</span><span class="p">:</span>
<span class="n">defines</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;BLOCK&#39;</span><span class="p">:</span> <span class="n">BLOCK</span><span class="p">}</span>
<span class="n">_kernels</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">kernel</span><span class="p">(</span><span class="n">_src</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="n">device</span><span class="p">,</span> <span class="n">defines</span><span class="o">=</span><span class="n">defines</span><span class="p">)</span>
<span class="k">return</span> <span class="n">_kernels</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
<span class="k">class</span> <span class="nc">_softmax</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">autograd</span><span class="o">.</span><span class="n">Function</span><span class="p">):</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="n">ctx</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1"># constraints of the op</span>
<span class="k">assert</span> <span class="n">x</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">torch</span><span class="o">.</span><span class="n">float32</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># *create launch grid*:</span>
<span class="c1"># here we just launch a grid of M programs</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">shape</span>
<span class="n">grid</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">opt</span><span class="p">:</span> <span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="p">)</span>
<span class="c1"># *launch kernel*:</span>
<span class="n">kernel</span> <span class="o">=</span> <span class="n">make_kernel</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">y</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">kernel</span><span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">data_ptr</span><span class="p">(),</span> <span class="n">x</span><span class="o">.</span><span class="n">data_ptr</span><span class="p">(),</span> <span class="n">y</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">grid</span> <span class="o">=</span> <span class="n">grid</span><span class="p">)</span>
<span class="k">return</span> <span class="n">y</span>
<span class="n">softmax</span> <span class="o">=</span> <span class="n">_softmax</span><span class="o">.</span><span class="n">apply</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="Writing-a-Unit-Test">
<h2>Writing a Unit Test<a class="headerlink" href="#Writing-a-Unit-Test" title="Permalink to this headline"></a></h2>
<div class="nbinput docutils container">
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[3]:
</pre></div>
</div>
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre>
<span></span><span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1823</span><span class="p">,</span> <span class="mi">781</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
<span class="n">y_tri</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">y_ref</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">y_tri</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">y_ref</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">y_tri</span><span class="p">,</span> <span class="n">y_ref</span><span class="p">))</span>
</pre></div>
</div>
</div>
<div class="nboutput nblast docutils container">
<div class="prompt empty docutils container">
</div>
<div class="output_area docutils container">
<div class="highlight"><pre>
tensor([[0.0004, 0.0006, 0.0004, ..., 0.0005, 0.0004, 0.0010],
[0.0003, 0.0029, 0.0004, ..., 0.0007, 0.0017, 0.0004],
[0.0002, 0.0006, 0.0005, ..., 0.0028, 0.0009, 0.0003],
...,
[0.0017, 0.0005, 0.0010, ..., 0.0006, 0.0004, 0.0001],
[0.0010, 0.0006, 0.0001, ..., 0.0006, 0.0017, 0.0014],
[0.0037, 0.0012, 0.0006, ..., 0.0003, 0.0005, 0.0003]],
device=&#39;cuda:0&#39;)
tensor([[0.0004, 0.0006, 0.0004, ..., 0.0005, 0.0004, 0.0010],
[0.0003, 0.0029, 0.0004, ..., 0.0007, 0.0017, 0.0004],
[0.0002, 0.0006, 0.0005, ..., 0.0028, 0.0009, 0.0003],
...,
[0.0017, 0.0005, 0.0010, ..., 0.0006, 0.0004, 0.0001],
[0.0010, 0.0006, 0.0001, ..., 0.0006, 0.0017, 0.0014],
[0.0037, 0.0012, 0.0006, ..., 0.0003, 0.0005, 0.0003]],
device=&#39;cuda:0&#39;)
True
</pre></div></div>
</div>
<p>Seems to work!</p>
</div>
<div class="section" id="Writing-a-Benchmark">
<h2>Writing a Benchmark<a class="headerlink" href="#Writing-a-Benchmark" title="Permalink to this headline"></a></h2>
<div class="nbinput docutils container">
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[4]:
</pre></div>
</div>
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre>
<span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="n">M</span> <span class="o">=</span> <span class="mi">4096</span>
<span class="n">Ns</span> <span class="o">=</span> <span class="p">[</span><span class="mi">128</span><span class="o">*</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50</span><span class="p">)]</span>
<span class="n">tri_ms</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ref_ms</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">def_ms</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">Ns</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="n">x</span><span class="o">.</span><span class="n">nelement</span><span class="p">()</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span> <span class="o">*</span> <span class="mf">1e-9</span> <span class="o">/</span> <span class="p">(</span><span class="n">ms</span> <span class="o">*</span> <span class="mf">1e-3</span><span class="p">)</span>
<span class="n">tri_ms</span> <span class="o">+=</span> <span class="p">[</span><span class="n">gbps</span><span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">)))]</span>
<span class="n">ref_ms</span> <span class="o">+=</span> <span class="p">[</span><span class="n">gbps</span><span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)))]</span>
<span class="n">def_ms</span> <span class="o">+=</span> <span class="p">[</span><span class="n">gbps</span><span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">naive_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">)))]</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;N&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Bandwidth (GB/s)&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">tri_ms</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Triton&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">ref_ms</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Torch&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">def_ms</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">&#39;Naive&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="nboutput nblast docutils container">
<div class="prompt empty docutils container">
</div>
<div class="output_area docutils container">
<img alt="../_images/tutorials_02-fused-softmax_12_0.png" src="../_images/tutorials_02-fused-softmax_12_0.png" />
</div>
</div>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="01-vector-add.html" class="btn btn-neutral float-left" title="Vector Addition" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2020, Philippe Tillet.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>