78 lines
3.5 KiB
C++
78 lines
3.5 KiB
C++
#include <cstring>
|
|
#include <cstdio>
|
|
#include <sstream>
|
|
#include "triton/runtime/jit.h"
|
|
#include "triton/driver/backend.h"
|
|
#include "triton/driver/stream.h"
|
|
#include "triton/dnn/conv.h"
|
|
#include "triton/tools/bench.hpp"
|
|
|
|
int main() {
|
|
// initialize default compute device
|
|
auto context = triton::driver::backend::contexts::get_default();
|
|
triton::jit jit(context);
|
|
triton::dnn::conv::type ty = triton::dnn::conv::FPROP;
|
|
// initialization
|
|
int32_t B = 16, NF = 128;
|
|
int32_t D = 1, H = 16, W = 16;
|
|
int32_t NC = 64, T = 1, R = 3, S = 3;
|
|
int32_t pad_d = 0, pad_h = 0, pad_w = 0;
|
|
int32_t stride_d = 1, stride_h = 1, stride_w = 1;
|
|
int32_t upsample_d = 1, upsample_h = 1, upsample_w = 1;
|
|
triton::dnn::conv configuration(128, 256, 1, 14, 14, 1, 5, 5, 512, 1, 1, 1, 0, 0, 0, 1, 1, 1, "fp32", "fp32", triton::dnn::conv::FPROP, 0);
|
|
// triton::dnn::conv configuration(B, NC, D, H, W, T, R, S, NF, stride_d, stride_h, stride_w, pad_d, pad_h, pad_w, upsample_d, upsample_h, upsample_w, ty);
|
|
// convolution configuration
|
|
std::vector<float> hc(configuration.c_size());
|
|
std::vector<float> rc(configuration.c_size());
|
|
std::vector<float> ha(configuration.a_size());
|
|
std::vector<float> hb(configuration.b_size());
|
|
srand(0);
|
|
for(size_t i = 0; i < ha.size(); i++)
|
|
ha[i] = (float)rand()/RAND_MAX;
|
|
for(size_t i = 0; i < hb.size(); i++)
|
|
hb[i] = (float)rand()/RAND_MAX;
|
|
for(size_t i = 0; i < hc.size(); i++)
|
|
hc[i] = 0;
|
|
rc = hc;
|
|
triton::driver::buffer* dc = triton::driver::buffer::create(context, hc.size()*4);
|
|
triton::driver::buffer* da = triton::driver::buffer::create(context, ha.size()*4);
|
|
triton::driver::buffer* db = triton::driver::buffer::create(context, hb.size()*4);
|
|
triton::driver::stream* stream = triton::driver::stream::create(context);
|
|
stream->write(da, true, 0, ha);
|
|
stream->write(db, true, 0, hb);
|
|
stream->write(dc, true, 0, hc);
|
|
stream->synchronize();
|
|
// benchmark a given convolution kernel
|
|
auto benchmark = [&](triton::driver::kernel* kernel,
|
|
triton::jit::launch_information info) {
|
|
configuration.init(stream, (triton::driver::cu_module*)kernel->module());
|
|
unsigned TM = info.global_range_size[0];
|
|
unsigned TN = info.global_range_size[1];
|
|
unsigned nthreads = info.num_threads;
|
|
unsigned GZ = jit.get_int("GZ");
|
|
configuration.enqueue(stream, kernel, da, db, dc, nullptr, TM, TN, GZ, nthreads);
|
|
stream->synchronize();
|
|
double ts = triton::tools::bench([&](){ configuration.enqueue(stream, kernel, da, db, dc, nullptr, TM, TN, GZ, nthreads); },
|
|
[&](){ stream->synchronize(); }, nullptr);
|
|
return configuration.get_nflops() / ts * 1e-3;
|
|
};
|
|
std::ostringstream oss;
|
|
configuration.src(oss);
|
|
std::string src = oss.str();
|
|
triton::jit::tune_res_t best = jit.autotune("conv", src.c_str(), benchmark);
|
|
jit.add_module("conv", src.c_str(), best.params);
|
|
// jit.add_module("conv", src.c_str(), configuration.default_params());
|
|
triton::driver::kernel* kernel = jit.get_function("conv");
|
|
triton::jit::launch_information info = jit.get_launch_info("conv");
|
|
std::cout << "Performance: " << benchmark(kernel, info) << " TFLOPS " << std::endl;
|
|
stream->read(dc, true, 0, hc);
|
|
configuration.cpu_ref(rc.data(), ha.data(), hb.data());
|
|
for(size_t i = 0; i < hc.size(); i++){
|
|
if(std::isnan(hc[i]) || std::abs(hc[i] - rc[i])/std::max(hc[i], rc[i]) > 1e-4){
|
|
std::cout << i << " " << hc[i] << " " << rc[i] << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
std::cout << "Pass!" << std::endl;
|
|
}
|