Files
triton/examples/python/tensorflow/run.py
2019-06-26 18:50:53 -07:00

46 lines
1.5 KiB
Python

import os
import tensorflow as tf
import numpy as np
from time import time
data_files_path = tf.resource_loader.get_data_files_path()
library_dir = os.path.dirname(os.path.realpath(__file__))
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
def run_dot():
M, N, K = 128,128,128
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
locks = tf.placeholder(tf.int32, shape=[4096])
# c = tf.matmul(a, b, transpose_a=True)
c = module.dot(a, b, locks)
# Reference
ha = np.random.rand(M, K).astype(np.float16)
hb = np.random.rand(N, K).astype(np.float16)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([c], feed_dict = {locks: np.zeros(4096),
a: ha,
b: hb})[0]
# Test
hresult = np.dot(ha.T, hb).T
dif = np.abs(result - hresult)
print("dif: %f" % np.max(dif))
def run_conv():
BS, C, H, W = 16, 32, 32, 32
R, S, NF = 3, 3, 32
a = tf.placeholder(tf.float32, shape=[BS, C, H, W])
b = tf.placeholder(tf.float32, shape=[C, R, S, NF])
c = module.conv2d(a, b)
# Reference
ha = np.random.rand(BS, C, H, W)
hb = np.random.rand(C, R, S, NF)
# Run
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
result = sess.run([c], feed_dict = {a: ha,
b: hb})[0]
run_conv()