221 lines
9.4 KiB
C++
221 lines
9.4 KiB
C++
#include <iostream>
|
|
#include <cstring>
|
|
#include <algorithm>
|
|
|
|
#include "isaac/kernels/templates/axpy.h"
|
|
#include "isaac/kernels/keywords.h"
|
|
#include "isaac/driver/backend.h"
|
|
|
|
#include "tools/loop.hpp"
|
|
#include "tools/vector_types.hpp"
|
|
#include "tools/arguments.hpp"
|
|
#include "isaac/symbolic/io.h"
|
|
|
|
#include <string>
|
|
|
|
namespace isaac
|
|
{
|
|
namespace templates
|
|
{
|
|
|
|
axpy_parameters::axpy_parameters(unsigned int _simd_width,
|
|
unsigned int _group_size, unsigned int _num_groups,
|
|
fetching_policy_type _fetching_policy) :
|
|
base::parameters_type(_simd_width, _group_size, 1, 1), num_groups(_num_groups), fetching_policy(_fetching_policy)
|
|
{
|
|
}
|
|
|
|
|
|
int axpy::is_invalid_impl(driver::Device const &, math_expression const &) const
|
|
{
|
|
if (p_.fetching_policy==FETCH_FROM_LOCAL)
|
|
return TEMPLATE_INVALID_FETCHING_POLICY_TYPE;
|
|
return TEMPLATE_VALID;
|
|
}
|
|
|
|
std::string axpy::generate_impl(std::string const & suffix, math_expression const & expressions, driver::Device const & device, mapping_type const & mappings) const
|
|
{
|
|
driver::backend_type backend = device.backend();
|
|
std::string _size_t = size_type(device);
|
|
|
|
kernel_generation_stream stream;
|
|
std::string str_simd_width = tools::to_string(p_.simd_width);
|
|
std::string dtype = append_width("#scalartype",p_.simd_width);
|
|
|
|
|
|
std::vector<size_t> assigned_scalar = filter_nodes([](math_expression::node const & node) {
|
|
return detail::is_assignment(node.op) && node.lhs.subtype==DENSE_ARRAY_TYPE && node.lhs.array->shape().max()==1;
|
|
}, expressions, expressions.root(), true);
|
|
|
|
switch(backend)
|
|
{
|
|
case driver::CUDA:
|
|
stream << "#include \"helper_math.h\"" << std::endl; break;
|
|
case driver::OPENCL:
|
|
stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << "," << p_.local_size_1 << ",1)))" << std::endl; break;
|
|
}
|
|
|
|
stream << KernelPrefix(backend) << " void " << "axpy" << suffix << "(" << _size_t << " N," << generate_arguments(dtype, device, mappings, expressions) << ")" << std::endl;
|
|
stream << "{" << std::endl;
|
|
stream.inc_tab();
|
|
|
|
process(stream, PARENT_NODE_TYPE, {{"array1", "#scalartype #namereg = #pointer[#start];"},
|
|
{"array11", "#scalartype #namereg = #pointer[#start];"},
|
|
{"arrayn", "#pointer += #start;"}}, expressions, mappings);
|
|
|
|
stream << _size_t << " idx = " << GlobalIdx0(backend) << ";" << std::endl;
|
|
stream << _size_t << " gsize = " << GlobalSize0(backend) << ";" << std::endl;
|
|
|
|
std::string init, upper_bound, inc;
|
|
fetching_loop_info(p_.fetching_policy, "N/"+str_simd_width, stream, init, upper_bound, inc, "idx", "gsize", device);
|
|
|
|
stream << "for(" << _size_t << " i = " << init << "; i < " << upper_bound << "; i += " << inc << ")" << std::endl;
|
|
stream << "{" << std::endl;
|
|
stream.inc_tab();
|
|
|
|
|
|
math_expression::container_type const & tree = expressions.tree();
|
|
std::vector<std::size_t> sfors = filter_nodes([](math_expression::node const & node){return node.op.type==OPERATOR_SFOR_TYPE;}, expressions, expressions.root(), true);
|
|
// std::cout << sfors.size() << std::endl;
|
|
|
|
for(unsigned int i = 0 ; i < sfors.size() ; ++i)
|
|
{
|
|
std::string info[3];
|
|
int idx = sfors[i];
|
|
for(int i = 0 ; i < 2 ; ++i){
|
|
idx = tree[idx].rhs.node_index;
|
|
info[i] = evaluate(LHS_NODE_TYPE, {{"placeholder", "#name"}}, expressions, idx, mappings);
|
|
|
|
}
|
|
info[2] = evaluate(RHS_NODE_TYPE, {{"placeholder", "#name"}}, expressions, idx, mappings);
|
|
info[0] = info[0].substr(1, info[0].size()-2);
|
|
stream << "for(int " << info[0] << " ; " << info[1] << "; " << info[2] << ")" << std::endl;
|
|
|
|
// stream << "int sforidx0 = 0 ;" << std::endl;
|
|
}
|
|
|
|
if(sfors.size()){
|
|
stream << "{" << std::endl;
|
|
stream.inc_tab();
|
|
}
|
|
|
|
size_t root = expressions.root();
|
|
if(sfors.size())
|
|
root = tree[sfors.back()].lhs.node_index;
|
|
|
|
std::vector<std::size_t> assigned = filter_nodes([](math_expression::node const & node){return detail::is_assignment(node.op);}, expressions, root, true);
|
|
std::set<std::string> processed;
|
|
|
|
//Declares register to store results
|
|
for(std::size_t idx: assigned)
|
|
{
|
|
process(stream, LHS_NODE_TYPE, {{"arrayn", dtype + " #namereg;"}, {"arrayn1", dtype + " #namereg;"}, {"array1n", dtype + " #namereg;"}, {"arraynn", dtype + " #namereg;"}, {"matrix_row", "#scalartype #namereg;"},
|
|
{"matrix_column", "#scalartype #namereg;"}, {"matrix_diag", "#scalartype #namereg;"}}, expressions, idx, mappings, processed);
|
|
}
|
|
|
|
//Fetches to registers
|
|
for(std::size_t idx: assigned)
|
|
{
|
|
std::string arrayn = dtype + " #namereg = " + vload(p_.simd_width, "#scalartype", "i*#stride", "#pointer", "1", backend, false) + ";";
|
|
std::string array_access = "#scalartype #namereg = #pointer[#index];";
|
|
std::string matrix_row = dtype + " #namereg = " + vload(p_.simd_width, "#scalartype", "i*#ld", "#pointer + #row*#stride", "#ld", backend, false) + ";";
|
|
std::string matrix_column = dtype + " #namereg = " + vload(p_.simd_width, "#scalartype", "i*#stride", "#pointer + #column*#ld", "#stride", backend, false) + ";";
|
|
std::string matrix_diag = dtype + " #namereg = " + vload(p_.simd_width, "#scalartype", "i*(#ld + #stride)", "#pointer + ((#diag_offset<0)?-#diag_offset:(#diag_offset*#ld))", "#ld + #stride", backend, false) + ";";
|
|
process(stream, RHS_NODE_TYPE, {{"arrayn", arrayn}, {"arrayn1", arrayn}, {"array1n", arrayn}, {"matrix_row", matrix_row}, {"matrix_column", matrix_column},
|
|
{"matrix_diag", matrix_diag}, {"array_access", array_access}}, expressions, idx, mappings, processed);
|
|
}
|
|
|
|
|
|
//Compute expressions
|
|
for(std::size_t idx: assigned){
|
|
std::string host_scalar_access = "#name";
|
|
if(p_.simd_width>1 && std::find(assigned_scalar.begin(), assigned_scalar.end(), idx)==assigned_scalar.end())
|
|
host_scalar_access = InitPrefix(backend, dtype).get() + "(#name)";
|
|
stream << evaluate(PARENT_NODE_TYPE, {{"array1", "#namereg"}, {"arrayn1", "#namereg"}, {"array1n", "#namereg"}, {"array11", "#namereg"}, {"arrayn", "#namereg"},
|
|
{"matrix_row", "#namereg"}, {"matrix_column", "#namereg"}, {"matrix_diag", "#namereg"}, {"array_access", "#namereg"},
|
|
{"cast", CastPrefix(backend, dtype).get()}, {"placeholder", "#name"}, {"host_scalar", host_scalar_access}},
|
|
expressions, idx, mappings) << ";" << std::endl;
|
|
}
|
|
|
|
//Writes back to registers
|
|
processed.clear();
|
|
for(std::size_t idx: assigned)
|
|
{
|
|
std::string arrayn = vstore(p_.simd_width, "#scalartype", "#namereg", "i*#stride", "#pointer", "1", backend, false) + ";";
|
|
std::string matrix_row = vstore(p_.simd_width, "#scalartype", "#namereg", "i*#ld", "#pointer + #row*#stride", "#ld", backend, false) + ";";
|
|
std::string matrix_column = vstore(p_.simd_width, "#scalartype", "#namereg", "i*#stride", "#pointer + #column*#ld", "#stride", backend, false) + ";";
|
|
std::string matrix_diag = vstore(p_.simd_width, "#scalartype", "#namereg", "i*(#ld + #stride)", "#pointer + (#diag_offset<0)?-#diag_offset:(#diag_offset*#ld)", "#ld + #stride", backend, false) + ";";
|
|
process(stream, LHS_NODE_TYPE, {{"arrayn", arrayn}, {"array1n", arrayn}, {"arrayn1", arrayn}, {"matrix_row", matrix_row}, {"matrix_column", matrix_column}, {"matrix_diag", matrix_diag}}, expressions, idx, mappings, processed);
|
|
}
|
|
|
|
if(sfors.size()){
|
|
stream.dec_tab();
|
|
stream << "}" << std::endl;
|
|
}
|
|
|
|
stream.dec_tab();
|
|
stream << "}" << std::endl;
|
|
|
|
processed.clear();
|
|
if(assigned_scalar.size())
|
|
{
|
|
stream << "if(idx==0)" << std::endl;
|
|
stream << "{" << std::endl;
|
|
stream.inc_tab();
|
|
for(std::size_t idx: assigned)
|
|
process(stream, LHS_NODE_TYPE, { {"array1", "#pointer[#start] = #namereg;"}, {"array11", "#pointer[#start] = #namereg;"} }, expressions, idx, mappings, processed);
|
|
stream.dec_tab();
|
|
stream << "}" << std::endl;
|
|
}
|
|
|
|
stream.dec_tab();
|
|
stream << "}" << std::endl;
|
|
|
|
return stream.str();
|
|
}
|
|
|
|
axpy::axpy(axpy_parameters const & parameters,
|
|
binding_policy_t binding_policy) :
|
|
base_impl<axpy, axpy_parameters>(parameters, binding_policy)
|
|
{}
|
|
|
|
axpy::axpy(unsigned int simd, unsigned int ls, unsigned int ng,
|
|
fetching_policy_type fetch, binding_policy_t bind):
|
|
base_impl<axpy, axpy_parameters>(axpy_parameters(simd,ls,ng,fetch), bind)
|
|
{}
|
|
|
|
|
|
std::vector<int_t> axpy::input_sizes(math_expression const & expressions) const
|
|
{
|
|
return {expressions.shape().max()};
|
|
}
|
|
|
|
void axpy::enqueue(driver::CommandQueue & queue, driver::Program const & program, std::string const & suffix, base & fallback, execution_handler const & control)
|
|
{
|
|
math_expression const & expressions = control.x();
|
|
//Size
|
|
int_t size = input_sizes(expressions)[0];
|
|
//Fallback
|
|
if(p_.simd_width > 1 && (requires_fallback(expressions) || (size%p_.simd_width>0)))
|
|
{
|
|
fallback.enqueue(queue, program, "fallback", fallback, control);
|
|
return;
|
|
}
|
|
//Kernel
|
|
std::string name = "axpy";
|
|
name += suffix;
|
|
driver::Kernel kernel(program, name.c_str());
|
|
//NDRange
|
|
driver::NDRange global(p_.local_size_0*p_.num_groups);
|
|
driver::NDRange local(p_.local_size_0);
|
|
//Arguments
|
|
unsigned int current_arg = 0;
|
|
kernel.setSizeArg(current_arg++, size);
|
|
set_arguments(expressions, kernel, current_arg, binding_policy_);
|
|
control.execution_options().enqueue(program.context(), kernel, global, local);
|
|
}
|
|
|
|
|
|
}
|
|
}
|