Files
triton/lib/kernels/templates/ger.cpp

142 lines
6.8 KiB
C++

#include <cstring>
#include <iostream>
#include "isaac/kernels/templates/ger.h"
#include "isaac/symbolic/io.h"
#include "isaac/kernels/keywords.h"
#include "tools/arguments.hpp"
#include "tools/loop.hpp"
#include "tools/vector_types.hpp"
namespace isaac
{
namespace templates
{
ger_parameters::ger_parameters(unsigned int _simd_width,
unsigned int _local_size_0, unsigned int _local_size_1,
unsigned int _num_groups_0, unsigned int _num_groups_1,
fetching_policy_type _fetching_policy) : base::parameters_type(_simd_width, _local_size_0, _local_size_1, 1), num_groups_0(_num_groups_0), num_groups_1(_num_groups_1), fetching_policy(_fetching_policy){ }
int ger::is_invalid_impl(driver::Device const &, math_expression const &) const
{
if (p_.simd_width>1)
return TEMPLATE_INVALID_SIMD_WIDTH;
if(p_.fetching_policy==FETCH_FROM_LOCAL)
return TEMPLATE_INVALID_FETCHING_POLICY_TYPE;
return TEMPLATE_VALID;
}
std::string ger::generate_impl(std::string const & suffix, math_expression const & expressions, driver::Device const & device, mapping_type const & mappings) const
{
kernel_generation_stream stream;
std::string _size_t = size_type(device);
std::string init0, upper_bound0, inc0, init1, upper_bound1, inc1;
std::string data_type = append_width("#scalartype",p_.simd_width);
driver::backend_type backend = device.backend();
switch(backend)
{
case driver::CUDA:
stream << "#include \"helper_math.h\"" << std::endl; break;
case driver::OPENCL:
stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << "," << p_.local_size_1 << ",1)))" << std::endl; break;
}
stream << KernelPrefix(backend) << " void axpy" << suffix << "(" << _size_t << " M, " << _size_t << " N, " << generate_arguments("#scalartype", device, mappings, expressions) << ")" << std::endl;
stream << "{" << std::endl;
stream.inc_tab();
process(stream, PARENT_NODE_TYPE, { {"array1", "#scalartype #namereg = #pointer[#start];"},
{"array11", "#scalartype #namereg = #pointer[#start];"},
{"arrayn", "#pointer += #start;"},
{"array1n", "#pointer += #start;"},
{"arrayn1", "#pointer += #start;"},
{"arraynn", "#pointer += #start;"}}
, expressions, mappings);
fetching_loop_info(p_.fetching_policy, "M", stream, init0, upper_bound0, inc0, GlobalIdx0(backend).get(), GlobalSize0(backend).get(), device);
stream << "for(" << _size_t << " i = " << init0 << "; i < " << upper_bound0 << "; i += " << inc0 << ")" << std::endl;
stream << "{" << std::endl;
stream.inc_tab();
fetching_loop_info(p_.fetching_policy, "N", stream, init1, upper_bound1, inc1, GlobalIdx1(backend).get(), GlobalSize1(backend).get(), device);
stream << "for(" << _size_t << " j = " << init1 << "; j < " << upper_bound1 << "; j += " << inc1 << ")" << std::endl;
stream << "{" << std::endl;
stream.inc_tab();
process(stream, PARENT_NODE_TYPE, { {"arraynn", data_type + " #namereg = $VALUE{i*#stride,j};"},
{"arrayn1", data_type + " #namereg = $VALUE{i*#stride};"},
{"arrayn", data_type + " #namereg = $VALUE{i*#stride};"},
{"array1n", data_type + " #namereg = $VALUE{j*#stride};"},
{"vdiag", "#scalartype #namereg = ((i + ((#diag_offset<0)?#diag_offset:0))!=(j-((#diag_offset>0)?#diag_offset:0)))?0:$VALUE{min(i*#stride, j*#stride)};"},
{"repeat", "#scalartype #namereg = $VALUE{(i%#sub0)*#stride, (j%#sub1)};"},
{"outer", "#scalartype #namereg = ($LVALUE{i*#stride})*($RVALUE{j*#stride});"} }
, expressions, mappings);
stream << evaluate(PARENT_NODE_TYPE, { {"arraynn", "#namereg"},
{"array1n", "#namereg"},
{"arrayn1", "#namereg"},
{"arrayn", "#namereg"},
{"vdiag", "#namereg"},
{"repeat", "#namereg"},
{"array1", "#namereg"},
{"array11", "#namereg"},
{"outer", "#namereg"},
{"cast", CastPrefix(backend, data_type).get()},
{"host_scalar", p_.simd_width==1?"#name": InitPrefix(backend, data_type).get() + "(#name)"}}
, expressions, expressions.root(), mappings) << ";" << std::endl;
process(stream, LHS_NODE_TYPE, { {"arraynn", "$VALUE{i*#stride,j} = #namereg;"},
{"array1n", "$VALUE{j*#stride} = #namereg;"},
{"arrayn1", "$VALUE{i*#stride} = #namereg;"},
{"arrayn", "$VALUE{i*#stride} = #namereg;"}} , expressions, mappings);
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
return stream.str();
}
ger::ger(parameters_type const & parameters, binding_policy_t binding_policy) :
base_impl<ger, ger_parameters>(parameters, binding_policy){ }
ger::ger(unsigned int simd, unsigned int ls1, unsigned int ls2,
unsigned int ng1, unsigned int ng2, fetching_policy_type fetch,
binding_policy_t bind):
base_impl<ger, ger_parameters>(ger_parameters(simd, ls1, ls2, ng1, ng2, fetch), bind)
{}
std::vector<int_t> ger::input_sizes(math_expression const & expression) const
{
std::pair<int_t, int_t> size = matrix_size(expression.tree(), lhs_most(expression.tree(), expression.root()));
return {size.first, size.second};
}
void ger::enqueue(driver::CommandQueue & /*queue*/, driver::Program const & program, std::string const & suffix, base &, execution_handler const & control)
{
math_expression const & expressions = control.x();
std::string name = "axpy";
name +=suffix;
driver::Kernel kernel(program, name.c_str());
driver::NDRange global(p_.local_size_0*p_.num_groups_0, p_.local_size_1*p_.num_groups_1);
driver::NDRange local(p_.local_size_0, p_.local_size_1);
unsigned int current_arg = 0;
std::vector<int_t> MN = input_sizes(expressions);
kernel.setSizeArg(current_arg++, MN[0]);
kernel.setSizeArg(current_arg++, MN[1]);
set_arguments(expressions, kernel, current_arg, binding_policy_);
control.execution_options().enqueue(program.context(), kernel, global, local);
}
}
}