Files
triton/lib/codegen/selection.cpp
2019-07-18 16:35:48 -07:00

1353 lines
56 KiB
C++

#include "triton/codegen/selection.h"
#include "triton/codegen/tune.h"
#include "triton/codegen/shmem_allocation.h"
#include "triton/codegen/target.h"
#include "triton/codegen/alignment_info.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/IRBuilder.h"
#include "triton/ir/context.h"
#include "triton/ir/module.h"
#include "triton/ir/function.h"
#include "triton/ir/type.h"
#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/InlineAsm.h"
namespace triton{
namespace codegen{
using namespace llvm;
/* Distributed Tile */
void distributed_tile::init_indices() {
std::vector<size_t> id(axes_.size(), 0);
size_t k = 0;
while(true) {
indices_t current;
for(size_t d = 0; d < id.size(); d++)
current.push_back(axes_[d].values[id[d]]);
size_t sz = indices_.size();
indices_[current] = sz;
values_[current] = UndefValue::get(ty_);
ordered_indices_.push_back(current);
id[0]++;
while(id[k] == axes_[k].values.size()){
if(k == id.size() - 1)
return;
id[k++] = 0;
id[k]++;
}
k = 0;
}
}
llvm::Type *distributed_tile::make_vector_ty(llvm::Type *ty, size_t vector_size) {
if(vector_size == 1)
return ty;
return VectorType::get(ty, vector_size);
}
distributed_tile::distributed_tile(Type *ty, const shapes_t &shapes, const axes_t &axes, llvm::IRBuilder<> &builder, bool vectorize)
: tile(make_vector_ty(ty, vectorize?axes[0].contiguous:1), shapes), axes_(axes), builder_(builder) {
vector_size_ = vectorize?ty_->getVectorNumElements():1;
init_indices();
}
void distributed_tile::set_value(indices_t idx, Value *v) {
values_[idx] = v;
}
Value* distributed_tile::get_value(indices_t idx) {
return values_[idx];
}
unsigned distributed_tile::get_linear_index(indices_t idx) {
return indices_[idx];
}
void distributed_tile::for_each(std::function<void (indices_t)> fn) {
for(unsigned i = 0; i < ordered_indices_.size(); i++)
if(i % vector_size_ == 0)
fn(ordered_indices_[i]);
}
/* Shared Tile */
void shared_tile::extract_constant(Value *arg, Value *&non_cst, Value *&cst) {
BinaryOperator *bin_op = dyn_cast<BinaryOperator>(arg);
Constant *_0 = ConstantInt::get(Type::getInt32Ty(arg->getContext()), 0);
if(dyn_cast<Constant>(arg)){
cst = arg;
non_cst = _0;
return;
}
if(!bin_op || bin_op->getOpcode() != llvm::BinaryOperator::Add){
non_cst = arg;
cst = _0;
return;
}
Constant *cst_lhs = dyn_cast<Constant>(bin_op->getOperand(0));
Constant *cst_rhs = dyn_cast<Constant>(bin_op->getOperand(1));
if(cst_lhs && cst_rhs){
cst = arg;
non_cst = _0;
}
else if(cst_lhs){
cst = cst_lhs;
non_cst = bin_op->getOperand(1);
}
else if(cst_rhs){
cst = cst_rhs;
non_cst = bin_op->getOperand(0);
}
else{
non_cst = arg;
cst = _0;
}
}
void shared_tile::extract_constant(const indices_t &arg_idx, indices_t &non_cst_idx, indices_t &cst_idx) {
non_cst_idx.clear();
cst_idx.clear();
for(Value *idx: arg_idx){
Value *non_cst, *cst;
extract_constant(idx, non_cst, cst);
non_cst_idx.push_back(non_cst);
cst_idx.push_back(cst);
}
}
Value* shared_tile::shared_offset(indices_t idx) {
Value *result = builder_.getInt32(0);
result = builder_.CreateAdd(result, idx[0]);
for(size_t i = 1; i < idx.size(); i++)
result = builder_.CreateAdd(result, builder_.CreateMul(idx[i], builder_.getInt32(shapes_[i-1])));
return result;
}
shared_tile::shared_tile(Type *ty, const shapes_t &shapes, Value *ptr, llvm::IRBuilder<> &builder, Value *offset):
tile(ty, shapes), ptr_(ptr), builder_(builder), offset_(offset), vector_size_(1){
return_vector_ = false;
}
void shared_tile::set_value(indices_t idx, Value *value) {
Value *ptr = builder_.CreateGEP(ptr_, shared_offset(idx));
unsigned addr_space = ptr->getType()->getPointerAddressSpace();
ptr = builder_.CreateBitCast(ptr, value->getType()->getPointerTo(addr_space));
builder_.CreateStore(value, ptr);
}
void shared_tile::set_vector_size(unsigned vector_size) {
vector_size_ = vector_size;
}
void shared_tile::set_return_mode(bool return_vector){
return_vector_ = return_vector;
}
Value* shared_tile::get_value(indices_t idx) {
indices_t non_cst_idx, cst_idx;
extract_constant(idx, non_cst_idx, cst_idx);
Value *&base_ptr = ptr_cache_[non_cst_idx];
unsigned vector_size = vector_size_;
Type *ty = ty_;
if(ty->isHalfTy() && (vector_size % 2 == 0)){
ty = IntegerType::get(ty->getContext(), 32);
vector_size = vector_size / 2;
}
if(base_ptr == nullptr){
// BasicBlock* store = builder_.GetInsertBlock();
// if(!non_cst_idx.empty())
// if(isa<Instruction>(non_cst_idx.front())){
// builder_.SetInsertPoint((Instruction*)non_cst_idx.front());
// }
base_ptr = builder_.CreateGEP(ptr_, shared_offset(non_cst_idx));
if(vector_size_ > 1){
Type *vec_ty = VectorType::get(ty, vector_size);
Type *vec_ptr_ty = PointerType::get(vec_ty, base_ptr->getType()->getPointerAddressSpace());
base_ptr = builder_.CreateBitCast(base_ptr, vec_ptr_ty);
}
// builder_.SetInsertPoint(store);
}
Value *offset = shared_offset(cst_idx);
Value *div = offset;
if(vector_size_ > 1)
div = builder_.CreateUDiv(offset, builder_.getInt32(vector_size_));
Value *ptr = builder_.CreateGEP(base_ptr, div);
Value *result = builder_.CreateLoad(ptr);
if(return_vector_ == false && vector_size_ > 1) {
Value *rem = builder_.CreateURem(offset, builder_.getInt32(vector_size_));
result = builder_.CreateExtractElement(result, rem);
}
return result;
}
/* convert ir::type to Type */
Type *selection::llvm_type(ir::type *ty, LLVMContext &ctx) {
// function
if(auto* tt = dynamic_cast<ir::function_type*>(ty)){
Type *return_ty = llvm_type(tt->get_return_ty(), ctx);
std::vector<Type*> param_tys;
std::transform(tt->params_begin(), tt->params_end(), std::back_inserter(param_tys),
[this,&ctx](ir::type* t){ return llvm_type(t, ctx);});
return FunctionType::get(return_ty, param_tys, false);
}
// pointer
if(ty->is_pointer_ty()){
Type *elt_ty = llvm_type(ty->get_pointer_element_ty(), ctx);
unsigned addr_space = ty->get_pointer_address_space();
return PointerType::get(elt_ty, addr_space);
}
// integer
if(ty->is_integer_ty()){
unsigned bitwidth = ty->get_integer_bitwidth();
return IntegerType::get(ctx, bitwidth);
}
// primitive types
switch(ty->get_type_id()){
case ir::type::VoidTyID: return Type::getVoidTy(ctx);
case ir::type::HalfTyID: return Type::getHalfTy(ctx);
case ir::type::FloatTyID: return Type::getFloatTy(ctx);
case ir::type::DoubleTyID: return Type::getDoubleTy(ctx);
case ir::type::X86_FP80TyID: return Type::getX86_FP80Ty(ctx);
case ir::type::PPC_FP128TyID: return Type::getPPC_FP128Ty(ctx);
case ir::type::LabelTyID: return Type::getLabelTy(ctx);
case ir::type::MetadataTyID: return Type::getMetadataTy(ctx);
case ir::type::TokenTyID: return Type::getTokenTy(ctx);
default: break;
}
// unknown type
throw std::runtime_error("unknown conversion from ir::type to Type");
}
/* convert ir::constant to Constant */
Constant *selection::llvm_constant(ir::constant *cst, LLVMContext &ctx) {
Type *dst_ty = llvm_type(cst->get_type(), ctx);
if(auto* cc = dynamic_cast<ir::constant_int*>(cst))
return ConstantInt::get(dst_ty, cc->get_value());
if(auto* cc = dynamic_cast<ir::constant_fp*>(cst))
return ConstantFP::get(dst_ty, cc->get_value());
// unknown constant
throw std::runtime_error("unknown conversion from ir::constant to Constant");
}
inline Value *Reassociate(Value *V, IRBuilder<> &Builder){
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(V);
if(BinOp)
if(BinOp->getOpcode()==BinaryOperator::BinaryOps::Add){
Value *LHS = Reassociate(BinOp->getOperand(0), Builder);
Value *RHS = Reassociate(BinOp->getOperand(1), Builder);
if(BinaryOperator *BinLHS = dyn_cast<BinaryOperator>(LHS))
if(BinLHS->getOpcode()==BinaryOperator::BinaryOps::Add){
Value *LLHS = BinLHS->getOperand(0);
Value *RLHS = BinLHS->getOperand(1);
// (cst + x) + y -> cst + (x + y)
if(isa<Constant>(LLHS))
return Builder.CreateAdd(LLHS, Builder.CreateAdd(RLHS, RHS));
// (x + cst) + y -> cst + (x + y)
if(isa<Constant>(RLHS))
return Builder.CreateAdd(RLHS, Builder.CreateAdd(LLHS, RHS));
}
if(BinaryOperator *BinRHS = dyn_cast<BinaryOperator>(RHS))
if(BinRHS->getOpcode()==BinaryOperator::BinaryOps::Add){
Value *LRHS = BinRHS->getOperand(0);
Value *RRHS = BinRHS->getOperand(1);
// x + (cst + y) -> cst + (x + y)
if(isa<Constant>(LRHS))
return Builder.CreateAdd(LRHS, Builder.CreateAdd(RRHS, LHS));
// x + (cst + y) -> cst + (x + y)
if(isa<Constant>(LRHS))
return Builder.CreateAdd(RRHS, Builder.CreateAdd(LRHS, LHS));
}
return BinOp;
}
return V;
}
/* convert ir::instruction to llvm::Instruction */
Instruction *selection::llvm_inst(ir::instruction *inst, std::function<Value*(ir::value*)> value, IRBuilder<> &builder) {
LLVMContext & ctx = builder.getContext();
auto block = [&](ir::basic_block *x) { return (BasicBlock*)vmap_.at(x); };
auto type = [&](ir::type *x) { return llvm_type(x, ctx); };
if(auto* ii = dynamic_cast<ir::cond_branch_inst*>(inst)){
BasicBlock *true_dest = block(ii->get_true_dest());
BasicBlock *false_dest = block(ii->get_false_dest());
Value *cond = value(ii->get_cond());
return builder.Insert(BranchInst::Create(true_dest, false_dest, cond));
}
if(auto* ii = dynamic_cast<ir::uncond_branch_inst*>(inst)){
BasicBlock *dest = block(ii->get_dest());
return builder.Insert(BranchInst::Create(dest));
}
if(dynamic_cast<ir::barrier_inst*>(inst)){
Module *module = builder.GetInsertBlock()->getModule();
return tgt_->add_barrier(module, builder);
}
if(auto* ii = dynamic_cast<ir::phi_node*>(inst)){
Type *ty = type(ii->get_type()->get_scalar_ty());
unsigned num_ops = ii->get_num_operands();
return builder.Insert(PHINode::Create(ty, num_ops));
}
if(auto* ii = dynamic_cast<ir::return_inst*>(inst)){
ir::value *ret_val = ii->get_return_value();
return builder.Insert(ReturnInst::Create(ctx, ret_val?value(ret_val):nullptr));
}
if(auto* ii = dynamic_cast<ir::binary_operator*>(inst)){
Value *lhs = value(ii->get_operand(0));
Value *rhs = value(ii->get_operand(1));
return builder.Insert(BinaryOperator::Create(ii->get_op(), lhs, rhs));
}
if(auto* ii = dynamic_cast<ir::icmp_inst*>(inst)){
CmpInst::Predicate pred = ii->get_pred();
Value *lhs = value(ii->get_operand(0));
Value *rhs = value(ii->get_operand(1));
return builder.Insert(CmpInst::Create(Instruction::ICmp, pred, lhs, rhs));
}
if(auto* ii = dynamic_cast<ir::fcmp_inst*>(inst)){
CmpInst::Predicate pred = ii->get_pred();
Value *lhs = value(ii->get_operand(0));
Value *rhs = value(ii->get_operand(1));
return builder.Insert(FCmpInst::Create(Instruction::FCmp, pred, lhs, rhs));
}
if(auto* ii = dynamic_cast<ir::cast_inst*>(inst)){
Value *arg = value(ii->get_operand(0));
Type *dst_ty = type(ii->get_type()->get_scalar_ty());
return builder.Insert(CastInst::Create(ii->get_op(), arg, dst_ty));
}
if(auto* ii = dynamic_cast<ir::getelementptr_inst*>(inst)){
std::vector<Value*> idx_vals;
std::transform(ii->idx_begin(), ii->idx_end(), std::back_inserter(idx_vals),
[&value](ir::value* x){ return value(x);});
Type *source_ty = type(ii->get_source_elt_ty()->get_scalar_ty());
idx_vals[0] = Reassociate(idx_vals[0], builder);
Value *arg = value(ii->get_operand(0));
return builder.Insert(GetElementPtrInst::CreateInBounds(source_ty, arg, idx_vals));
}
if(ir::load_inst* ii = dynamic_cast<ir::load_inst*>(inst)){
Value *ptr = value(ii->get_pointer_operand());
LoadInst *result = new LoadInst(ptr);
return builder.Insert(result);
}
if(ir::store_inst* ii = dynamic_cast<ir::store_inst*>(inst)){
Value *val = value(ii->get_value_operand());
Value *ptr = value(ii->get_pointer_operand());
builder.CreateStore(val, ptr);
return nullptr;
}
if(ir::select_inst* ii = dynamic_cast<ir::select_inst*>(inst)){
Value *pred = value(ii->get_operand(0));
Value *if_value = value(ii->get_operand(1));
Value *else_value = value(ii->get_operand(2));
return builder.Insert(SelectInst::Create(pred, if_value, else_value));
}
if(ir::get_range_id_inst* ii = dynamic_cast<ir::get_range_id_inst*>(inst)){
Value *offset = tgt_->get_block_id(builder.GetInsertBlock()->getModule(), builder, ii->get_axis());
return (Instruction*)offset;
}
if(ir::atomic_cas_inst* ii = dynamic_cast<ir::atomic_cas_inst*>(inst)){
BasicBlock *current = builder.GetInsertBlock();
Module *module = current->getModule();
Value *tid = tgt_->get_local_id(module, builder, 0);
Value *pred = builder.CreateICmpEQ(tid, builder.getInt32(0));
BasicBlock *tid_0_bb = BasicBlock::Create(ctx, "tid_0", current->getParent());
BasicBlock *tid_0_done_bb = BasicBlock::Create(ctx, "tid_0_done", current->getParent());
Value *ptr = builder.CreateGEP(sh_mem_ptr_, builder.getInt32(alloc_->get_offset(ii)));
ptr = builder.CreateBitCast(ptr, PointerType::get(builder.getInt32Ty(), ptr->getType()->getPointerAddressSpace()));
tgt_->add_barrier(module, builder);
builder.CreateCondBr(pred, tid_0_bb, tid_0_done_bb);
builder.SetInsertPoint(tid_0_bb);
Value *cas_ptr = value(ii->get_operand(0));
Value *cas_cmp = value(ii->get_operand(1));
Value *cas_val = value(ii->get_operand(2));
Value *old = builder.CreateAtomicCmpXchg(cas_ptr, cas_cmp, cas_val, AtomicOrdering::Monotonic, AtomicOrdering::Monotonic);
old = builder.CreateExtractValue(old, {0});
builder.CreateStore(old, ptr);
builder.CreateBr(tid_0_done_bb);
builder.SetInsertPoint(tid_0_done_bb);
tgt_->add_barrier(module, builder);
Value *res = builder.CreateLoad(ptr);
return (Instruction*)res;
}
if(ir::atomic_add_inst* ii = dynamic_cast<ir::atomic_add_inst*>(inst)){
Value *ptr = value(ii->get_operand(0));
Value *val = value(ii->get_operand(1));
Value *atom_f_add;
if(val->getType()->isFloatTy())
atom_f_add = Intrinsic::getDeclaration(builder.GetInsertBlock()->getModule(), Intrinsic::nvvm_atomic_load_add_f32, {ptr->getType()});
else if(val->getType()->isHalfTy()){
Type *fp16 = Type::getHalfTy(ctx);
FunctionType *atom_ty = FunctionType::get(fp16, {fp16->getPointerTo(), fp16}, false);
atom_f_add = InlineAsm::get(atom_ty, " atom.relaxed.global.gpu.add.noftz.f16 $0, [$1], $2;", "=h,l,h", true);
}
Value *res = builder.CreateCall(atom_f_add, {ptr, val});
return (Instruction*)res;
}
if(ir::sqrt_inst* ii = dynamic_cast<ir::sqrt_inst*>(inst)){
Value *val = value(ii->get_operand(0));
Value *sqrt = Intrinsic::getDeclaration(builder.GetInsertBlock()->getModule(), Intrinsic::sqrt, {val->getType()});
Value *res = builder.CreateCall(sqrt, {val});
return (Instruction*)res;
}
// unknown instruction
throw std::runtime_error("unknown conversion from ir::instruction to Instruction");
}
/* convert ir::alloc_const to llvm::GlobalVariable */
Value* selection::llvm_alloc_const(ir::alloc_const *v, Module *module, IRBuilder<> &builder) {
unsigned size = ((ir::constant_int*)v->get_operand(0))->get_value();
Type *element_ty = llvm_type(v->get_type()->get_pointer_element_ty(), module->getContext());
Type *array_ty = llvm::ArrayType::get(element_ty, size);
Value *array = new llvm::GlobalVariable(*module, array_ty, false, llvm::GlobalVariable::ExternalLinkage,
nullptr, v->get_name(), nullptr, llvm::GlobalVariable::NotThreadLocal, 4);
return builder.CreateBitCast(array, element_ty->getPointerTo(4));
}
/* convert ir::value to llvm::Value */
Value* selection::llvm_value(ir::value *v, IRBuilder<> &builder) {
assert(!v->get_type()->is_tile_ty());
LLVMContext &ctx = builder.getContext();
if(vmap_.find(v) != vmap_.end())
return vmap_.at(v);
// create operands
if(auto *cc = dynamic_cast<ir::constant*>(v))
return llvm_constant(cc, ctx);
// alloc const
if(auto *cc = dynamic_cast<ir::alloc_const*>(v)){
BasicBlock *block = builder.GetInsertBlock();
Module *module = block->getModule();
unsigned size = ((ir::constant_int*)cc->get_operand(0))->get_value();
Type *element_ty = llvm_type(cc->get_type()->get_pointer_element_ty(), ctx);
Type *array_ty = llvm::ArrayType::get(element_ty, size);
if(vmap_.find(v) == vmap_.end()){
Value *array = new llvm::GlobalVariable(*module, array_ty, false, llvm::GlobalVariable::ExternalLinkage,
nullptr, cc->get_name(), nullptr, llvm::GlobalVariable::NotThreadLocal, 4);
vmap_[v] = builder.CreateBitCast(array, array->getType()->getArrayElementType()->getPointerTo(4));
}
return vmap_.at(v);
}
// instruction
if(auto *ii = dynamic_cast<ir::instruction*>(v)){
auto value = [&](ir::value *x) { return llvm_value(x, builder); };
return llvm_inst(ii, value, builder);
}
// unknown value
throw std::runtime_error("unknown conversion from ir::value to Value");
}
// Grid construction
std::vector<Value*> delinearize(Value *trailing, std::vector<unsigned> &shapes, IRBuilder<> &builder){
size_t dim = shapes.size();
std::vector<Value*> result(dim);
for(unsigned k = 0; k < dim - 1; k++){
Constant *dim_k = builder.getInt32(shapes[k]);
Value *rem = builder.CreateURem(trailing, dim_k);
trailing = builder.CreateUDiv(trailing, dim_k);
result[k] = rem;
}
result[dim - 1] = trailing;
return result;
}
inline int32_t ceil(int32_t num, int32_t div){
return (num + div - 1)/div;
}
inline void to_warps(const std::vector<unsigned> &bs, std::vector<unsigned> &nw, std::vector<unsigned> &ws){
static const size_t warp_size = 32;
size_t nthreads = 1, nwarps = 1;
nw.resize(bs.size());
ws.resize(bs.size());
for(size_t i = 0; i < bs.size(); ++i){
nthreads *= bs[i];
nw[i] = ceil(nthreads, nwarps*warp_size);
nwarps *= nw[i];
}
for(size_t i = 0; i < bs.size(); ++i)
ws[i] = bs[i] / nw[i];
}
void selection::init_axes(ir::value *v, IRBuilder<> &builder, Value *u_thread_id, Value *u_warp_id) {
const auto& shapes = v->get_type()->get_tile_shapes();
size_t dim = shapes.size();
if(params_->get_fragment(v, 0) == tune::STRIDED_SCAN){
std::vector<unsigned> contiguous(dim);
std::vector<unsigned> block_size(dim);
std::vector<unsigned> warp_size(dim);
std::vector<unsigned> n_warps(dim);
for(unsigned i = 0; i < shapes.size(); i++){
std::string str_i = std::to_string(i);
contiguous[i] = params_->get_param(v, "nts.d" + str_i)->get_value();
block_size[i] = params_->get_param(v, "mts.d" + str_i)->get_value();
}
to_warps(block_size, n_warps, warp_size);
std::vector<Value*> thread_id_in_warp = delinearize(u_thread_id, warp_size, builder);
std::vector<Value*> warp_id = delinearize(u_warp_id, n_warps, builder);
// Create axes
for(unsigned k = 0; k < dim; k++) {
std::string str_k = std::to_string(k);
Value *warp_size_k = builder.getInt32(warp_size[k]);
Value *contiguous_k = builder.getInt32(contiguous[k]);
Value *thread_id = builder.CreateAdd(thread_id_in_warp[k], builder.CreateMul(warp_id[k], warp_size_k));
thread_id = builder.CreateMul(thread_id, contiguous_k);
unsigned per_block = contiguous[k] * warp_size[k] * n_warps[k];
unsigned per_thread = contiguous[k] * shapes[k]->get_value() / per_block;
std::vector<Value*> idx_list(per_thread);
for(unsigned n = 0 ; n < per_thread; n++){
unsigned offset = n / contiguous[k] * per_block + n % contiguous[k];
idx_list[n] = builder.CreateAdd(thread_id, builder.getInt32(offset), "idx_" + str_k + "_" + std::to_string(n));
}
axes_[params_->get_param_group(v, k)] = distributed_axis{contiguous[k], idx_list};
}
}
else {
Value *_1 = builder.getInt32(1);
Value *_2 = builder.getInt32(2);
Value *_3 = builder.getInt32(3);
Value *_4 = builder.getInt32(4);
Value *_8 = builder.getInt32(8);
Value *_16 = builder.getInt32(16);
// fragments per warp
unsigned fpw_0 = params_->get_param(v, "fpw.d0")->get_value();
unsigned fpw_1 = params_->get_param(v, "fpw.d1")->get_value();
// warps per tile
unsigned wpt_0 = params_->get_param(v, "wpt.d0")->get_value();
unsigned wpt_1 = params_->get_param(v, "wpt.d1")->get_value();
// hmma warp tile size
unsigned hmma_wts_0 = fpw_0 * 8;
unsigned hmma_wts_1 = fpw_1 * 8;
// hmma block tile size
unsigned hmma_bts_0 = hmma_wts_0 * wpt_0;
unsigned hmma_bts_1 = hmma_wts_1 * wpt_1;
// number of repetition
unsigned num_rep_0 = shapes[0]->get_value() / hmma_bts_0;
unsigned num_rep_1 = shapes[1]->get_value() / hmma_bts_1;
// size of each pack (interleaving)
pack_size_0_ = std::min<unsigned>(num_rep_0, 1);
pack_size_1_ = std::min<unsigned>(num_rep_1, 1);
// number of packs (interleaving)
num_packs_0_ = num_rep_0 / pack_size_0_;
num_packs_1_ = num_rep_1 / pack_size_1_;
/* intra warp offset */
// offset of quad in pair
Value *in_pair_off_a = builder.CreateMul(builder.CreateUDiv(builder.CreateAnd(u_thread_id, _16), builder.getInt32(4)),
builder.getInt32(fpw_0 * pack_size_0_));
Value *in_pair_off_b = builder.CreateMul(builder.CreateUDiv(builder.CreateAnd(u_thread_id, _16), builder.getInt32(4)),
builder.getInt32(fpw_1 * pack_size_1_));
// Quad pair id
Value *pair_a_id = builder.CreateUDiv(builder.CreateURem(u_thread_id, _16), _4);
Value *pair_b_id = builder.CreateUDiv(builder.CreateURem(u_thread_id, _16), _4);
pair_a_id = builder.CreateURem(pair_a_id, builder.getInt32(fpw_0));
pair_b_id = builder.CreateUDiv(pair_b_id, builder.getInt32(fpw_0));
// Quad pair offset
Value *pair_a_off = builder.CreateMul(pair_a_id, builder.getInt32(4 * pack_size_0_));
Value *pair_b_off = builder.CreateMul(pair_b_id, builder.getInt32(4 * pack_size_1_));
/* inter warp offset */
Value *warp_id_0 = builder.CreateURem(u_warp_id, builder.getInt32(wpt_0));
Value *warp_id_1 = builder.CreateUDiv(u_warp_id, builder.getInt32(wpt_0));
Value *warp_offset_i = builder.CreateMul(warp_id_0, builder.getInt32(hmma_wts_0 * pack_size_0_));
Value *warp_offset_j = builder.CreateMul(warp_id_1, builder.getInt32(hmma_wts_1 * pack_size_1_));
/* offsets */
// a offset
offset_a_i_ = builder.CreateAdd(warp_offset_i, builder.CreateAdd(pair_a_off, in_pair_off_a));
offset_a_k_ = builder.CreateAnd(u_thread_id, _3);
// b offsets
offset_b_j_ = builder.CreateAdd(warp_offset_j, builder.CreateAdd(pair_b_off, in_pair_off_b));
offset_b_k_ = builder.CreateAnd(u_thread_id, _3);
// c offsets
Value *offset_c_i = builder.CreateAdd(builder.CreateAnd(u_thread_id, _1), offset_a_i_);
Value *offset_c_j = builder.CreateAdd(builder.CreateAnd(u_thread_id, _2),
builder.CreateAdd(warp_offset_j, pair_b_off));
/* indices */
// i indices
std::vector<Value*> idx_i;
for(unsigned pack = 0; pack < num_packs_0_; pack++)
for(unsigned ii = 0; ii < pack_size_0_; ii++)
for(unsigned i = 0; i < 2; i++){
idx_i.push_back(builder.CreateAdd(offset_c_i, builder.getInt32(pack*hmma_bts_0*pack_size_0_ + ii*4 + i*2)));
}
// j indices
std::vector<Value*> idx_j;
for(unsigned pack = 0; pack < num_packs_1_; pack++)
for(unsigned jj = 0; jj < pack_size_1_; jj++)
for(unsigned j = 0; j < 2; j++){
idx_j.push_back(builder.CreateAdd(offset_c_j, builder.getInt32(pack*hmma_bts_1*pack_size_1_ + jj*4 + j*4*fpw_1*pack_size_1_)));
idx_j.push_back(builder.CreateAdd(offset_c_j, builder.getInt32(pack*hmma_bts_1*pack_size_1_ + jj*4 + j*4*fpw_1*pack_size_1_ + 1)));
}
/* axes */
axes_[params_->get_param_group(v, 0)] = distributed_axis{1, idx_i};
axes_[params_->get_param_group(v, 1)] = distributed_axis{1, idx_j};
}
}
void selection::create_grids(std::vector<ir::value*> &grids,
std::map<unsigned, ir::value*> &references,
ir::function *fn) {
// get number of dimensions greater than 1
auto get_tile_gt1_dim = [&](ir::value *v){
unsigned result = 0;
for(ir::constant_int* shape: v->get_type()->get_tile_shapes()) {
result += (shape->get_value() > 1)?shape->get_value():0;
}
return result;
};
// bind references
std::set<ir::value*> seen;
std::function<void(ir::value*)> bind_references = [&](ir::value *v)
{
// skip
if(!v->get_type()->is_tile_ty() || !seen.insert(v).second || dynamic_cast<ir::mask_inst*>(v))
return;
// recurse
if(auto *user = dynamic_cast<ir::user*>(v))
for(ir::value *op: user->ops())
bind_references(op);
// bind
const auto& shapes = v->get_type()->get_tile_shapes();
if(buffer_info_->is_shared(v))
return;
for(size_t d = 0; d < shapes.size(); d++){
if(shapes[d]->get_value() == 1)
continue;
unsigned x = params_->get_param_group(v, d);
ir::value *&r = references[x];
if(!r || get_tile_gt1_dim(v) > get_tile_gt1_dim(r))
r = v;
}
};
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *i: block->get_inst_list())
bind_references(i);
// create grid
for(auto &ref: references)
if(std::find(grids.begin(), grids.end(), ref.second) == grids.end())
grids.push_back(ref.second);
}
bool static inline has_phi_user(ir::value *v) {
for(ir::user *usr: v->get_users()){
if(dynamic_cast<ir::phi_node*>(usr))
return true;
}
return false;
}
void selection::create_tile(ir::value *v, IRBuilder<> &builder,
const std::map<unsigned, ir::value*>& references,
std::set<ir::value*> &seen, Value *sh_mem_ptr) {
if(!v->get_type()->is_tile_ty() || !seen.insert(v).second)
return;
if(auto *user = dynamic_cast<ir::user*>(v))
for(ir::value *op: user->ops())
create_tile(op, builder, references, seen, sh_mem_ptr);
LLVMContext &ctx = builder.getContext();
const auto& cshapes = v->get_type()->get_tile_shapes();
std::vector<unsigned> shapes;
for(ir::constant_int* shape: cshapes)
shapes.push_back(shape->get_value());
unsigned pad = alloc_->is_ld_padded(v);
if(pad > 0)
shapes[0] += pad;
Type* ty = llvm_type(v->get_type()->get_scalar_ty(), ctx);
// create shared tile
if(buffer_info_->is_shared(v)){
// shared copy
PointerType *ptr_ty = ty->getPointerTo(sh_mem_ptr->getType()->getPointerAddressSpace());
// phi-node (double-buffering)
if(auto *phi = dynamic_cast<ir::phi_node*>(v)) {
BasicBlock *parent = (BasicBlock*)vmap_[phi->get_parent()];
unsigned id_pre = 0, id_loop = 1;
if(phi->get_incoming_block(0) == phi->get_parent())
std::swap(id_pre, id_loop);
if(parent->empty())
builder.SetInsertPoint(parent);
else
builder.SetInsertPoint(&*parent->getFirstInsertionPt());
PHINode *ptr = builder.CreatePHI(ptr_ty, 2);
PHINode *offset = builder.CreatePHI(builder.getInt32Ty(), 2);
// next pointer
Value *pre_ptr = builder.CreateGEP(sh_mem_ptr, builder.getInt32(alloc_->get_offset(phi)));
pre_ptr = builder.CreateBitCast(pre_ptr, ptr->getType());
Value *next_ptr = builder.CreateGEP(ptr, offset, "next_ptr");
tmap_.insert({phi, new shared_tile(ty, shapes, ptr, builder, offset)});
for(unsigned i = 0; i < phi->get_num_incoming(); i++) {
ir::basic_block* inc_block = phi->get_incoming_block(i);
ir::value* inc_value = phi->get_incoming_value(i);
ir::instruction* terminator = inc_block->get_inst_list().back();
bool is_loop_latch = buffer_info_->is_loop_latch(phi, terminator);
tmap_.insert({inc_value, new shared_tile(ty, shapes, is_loop_latch?next_ptr:pre_ptr, builder)});
}
}
else {
if(!has_phi_user(v)){
size_t offset = alloc_->get_offset(v);
Value *ptr = builder.CreateGEP(sh_mem_ptr, builder.getInt32(offset));
ptr = builder.CreateBitCast(ptr, ptr_ty);
tmap_.insert({v, new shared_tile(ty, shapes, ptr, builder)});
}
}
}
// create distributed tile
else {
const auto &cshapes = v->get_type()->get_tile_shapes();
std::vector<distributed_axis> axes(cshapes.size());
for(size_t d = 0; d < cshapes.size(); d++){
if(cshapes[d]->get_value() > 1){
unsigned x = params_->get_param_group(v, d);
axes[d] = axes_.at(x);
}
else{
axes[d].contiguous = 1;
axes[d].values = {builder.getInt32(0)};
}
}
bool vectorize = dynamic_cast<ir::vectorize_inst*>(v);
distributed_tile *T = new distributed_tile(ty, shapes, axes, builder, vectorize);
tmap_.insert({v, T});
// constant range
if(dynamic_cast<ir::constant*>(v) && !dynamic_cast<ir::undef_value*>(v)){
T->for_each([&](indices_t idx){
assert(idx.size() == 1);
T->set_value(idx, idx[0]);
});
}
}
}
void selection::init_grids(ir::function *fn, IRBuilder<> &builder, Value *sh_mem_ptr){
// fetch linear ID
Module *mod = builder.GetInsertBlock()->getParent()->getParent();
Value *warp_size = builder.getInt32(32);
Value* u_thread_id = tgt_->get_local_id(mod, builder, 0);
Value *u_thread_warp_id = builder.CreateURem(u_thread_id, warp_size);
Value *u_warp_id = builder.CreateUDiv(u_thread_id, warp_size);
// create grid
std::vector<ir::value*> grids;
std::map<unsigned, ir::value*> references;
create_grids(grids, references, fn);
for(ir::value* i: grids){
if(auto *instr = dynamic_cast<ir::instruction*>(i))
for(unsigned r = 0; r < instr->get_num_results(); r++)
init_axes(instr->get_result(r), builder, u_thread_warp_id, u_warp_id);
else
init_axes(i, builder, u_thread_warp_id, u_warp_id);
}
// create tile
std::set<ir::value*> seen;
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *i: block->get_inst_list()){
if(!i->get_type()->is_tile_ty())
continue;
for(unsigned r = 0; r < i->get_num_results(); r++)
create_tile(i->get_result(r), builder, references, seen, sh_mem_ptr);
}
}
void selection::lower_tile_instruction(ir::instruction *ins, llvm::IRBuilder<> &builder) {
BasicBlock *block = builder.GetInsertBlock();
Module *module = block->getModule();
LLVMContext &ctx = builder.getContext();
Function *fn = block->getParent();
ir::value *mask = ins->get_mask_pred();
BasicBlock *last_block = nullptr;
auto set_mask_insert_pt = [&](indices_t idx){
if(mask){
distributed_tile *mask_tile = (distributed_tile*)tmap_.at(ins->get_mask_pred());
BasicBlock *block = pmap_.at({mask_tile, idx});
builder.SetInsertPoint(block->getTerminator());
last_block = last_block_.at({mask_tile, idx});
}
};
// store
if(auto *x = dynamic_cast<ir::store_inst*>(ins)) {
distributed_tile* ptr = (distributed_tile*)tmap_.at(x->get_pointer_operand());
tile *value = tmap_.at(x->get_value_operand());
ptr->for_each([&](indices_t idx){
set_mask_insert_pt(idx);
StoreInst *store = new StoreInst(value->get_value(idx), ptr->get_value(idx));
builder.Insert(store);
});
}
else {
if(auto *x = dynamic_cast<ir::downcast_inst*>(ins)){
vmap_[x] = tmap_[x->get_operand(0)]->get_value({builder.getInt32(0)});
return;
}
if(auto *x = dynamic_cast<ir::reduce_inst*>(ins)){
Value *partial = nullptr;
distributed_tile* op = (distributed_tile*)tmap_.at(ins->get_operand(0));
// reduce within thread
op->for_each([&](indices_t idx){
Value *current = op->get_value(idx);
if(partial == nullptr)
partial = current;
else
partial = builder.CreateFAdd(partial, current);
});
// reduce within warp
Value *shfl = Intrinsic::getDeclaration(builder.GetInsertBlock()->getModule(), Intrinsic::nvvm_shfl_sync_bfly_f32);
for (int i = 16; i > 0; i >>= 1){
Value *rhs = builder.CreateCall(shfl, {builder.getInt32(0xffffffff), partial,
builder.getInt32(i), builder.getInt32(0x1f)});
partial = builder.CreateFAdd(partial, rhs);
}
// reduce within block
Value *tid = tgt_->get_local_id(module, builder, 0);
BasicBlock *partial_reduce_do = BasicBlock::Create(ctx, "partial_reduce_do", fn);
BasicBlock *partial_reduce_done = BasicBlock::Create(ctx, "partial_reduce_done", fn);
Value *id_in_warp = builder.CreateURem(tid, builder.getInt32(32));
Value *warp_id = builder.CreateUDiv(tid, builder.getInt32(32));
builder.CreateCondBr(builder.CreateICmpEQ(id_in_warp, builder.getInt32(0)),
partial_reduce_do, partial_reduce_done);
builder.SetInsertPoint(partial_reduce_do);
unsigned addr_space = sh_mem_ptr_->getType()->getPointerAddressSpace();
Type *ptr_ty = PointerType::get(builder.getFloatTy(), addr_space);
Value *sh_mem_ptr = builder.CreateBitCast(sh_mem_ptr_, ptr_ty);
Value *write_ptr = builder.CreateGEP(sh_mem_ptr, warp_id);
builder.CreateStore(partial, write_ptr);
builder.CreateBr(partial_reduce_done);
builder.SetInsertPoint(partial_reduce_done);
// Final reduction with the first warp
tgt_->add_barrier(module, builder);
BasicBlock *final_reduce_do = BasicBlock::Create(ctx, "final_reduce_do", fn);
BasicBlock *final_reduce_done = BasicBlock::Create(ctx, "final_reduce_done", fn);
builder.CreateCondBr(builder.CreateICmpEQ(warp_id, builder.getInt32(0)),
final_reduce_do, final_reduce_done);
builder.SetInsertPoint(final_reduce_do);
Value *read_ptr = builder.CreateGEP(sh_mem_ptr, tid);
Value *result = builder.CreateLoad(read_ptr);
for (int i = params_->get_num_threads() / 64; i > 0; i >>= 1){
Value *rhs = builder.CreateCall(shfl, {result, builder.getInt32(i),
builder.getInt32(0x1f), builder.getInt32(0xffffffff)});
builder.CreateFAdd(result, rhs);
}
builder.CreateStore(result, read_ptr);
builder.CreateBr(final_reduce_done);
builder.SetInsertPoint(final_reduce_done);
tgt_->add_barrier(module, builder);
vmap_[ins] = builder.CreateLoad(sh_mem_ptr);
return;
}
tile *ti = tmap_[ins];
distributed_tile* result = (distributed_tile*)ti;
if(!ins->get_type()->is_tile_ty())
return;
const auto& shapes = ins->get_type()->get_tile_shapes();
// global_range
if(auto *x = dynamic_cast<ir::get_global_range_inst*>(ins)) {
Value *offset = tgt_->get_global_offset(module, builder, shapes[0]->get_value(), x->get_axis());
result->for_each([&](indices_t idx){
BinaryOperator *bin = static_cast<BinaryOperator*>(idx[0]);
result->set_value(idx, builder.CreateAdd(bin, offset));
});
}
// mask
else if(dynamic_cast<ir::mask_inst*>(ins)) {
distributed_tile* pred = (distributed_tile*)tmap_.at(ins->get_operand(0));
distributed_tile* mask_tile_true = (distributed_tile*)tmap_.at(ins->get_result(0));
distributed_tile* mask_tile_false = (distributed_tile*)tmap_.at(ins->get_result(1));
pred->for_each([&](indices_t idx){
BasicBlock *mask_then_bb = BasicBlock::Create(ctx, "mask_then", fn);
BasicBlock* mask_else_bb = BasicBlock::Create(ctx, "mask_else", fn);
BasicBlock *mask_done_bb = BasicBlock::Create(ctx, "mask_done", fn);
builder.CreateCondBr(pred->get_value(idx), mask_then_bb, mask_else_bb);
builder.SetInsertPoint(mask_then_bb);
builder.CreateBr(mask_done_bb);
builder.SetInsertPoint(mask_else_bb);
builder.CreateBr(mask_done_bb);
builder.SetInsertPoint(mask_done_bb);
pmap_.insert({{mask_tile_true, idx}, mask_then_bb});
pmap_.insert({{mask_tile_false, idx}, mask_else_bb});
last_block_.insert({{mask_tile_true, idx}, mask_done_bb});
last_block_.insert({{mask_tile_false, idx}, mask_done_bb});
});
}
// merge
else if(auto *merge = dynamic_cast<ir::psi_inst*>(ins)) {
distributed_tile* mask_tile_true = (distributed_tile*)tmap_.at(merge->get_mask_true());
distributed_tile *value_tile_true = (distributed_tile*)tmap_.at(merge->get_value_true());
distributed_tile* mask_tile_false = (distributed_tile*)tmap_.at(merge->get_mask_false());
distributed_tile *value_tile_false = (distributed_tile*)tmap_.at(merge->get_value_false());
result->for_each([&](indices_t idx){
BasicBlock *block_true = pmap_.at({mask_tile_true, idx});
Value *value_true = value_tile_true->get_value(idx);
BasicBlock *block_false = pmap_.at({mask_tile_false, idx});
Value *value_false = value_tile_false->get_value(idx);
BasicBlock *block_done = last_block_.at({mask_tile_true, idx});
if(block_done->getTerminator())
builder.SetInsertPoint(block_done->getTerminator());
else
builder.SetInsertPoint(block_done);
PHINode *phi = builder.CreatePHI(value_true->getType(), 2);
phi->addIncoming(value_true, block_true);
phi->addIncoming(value_false,block_false);
result->set_value(idx, phi);
});
}
// reshape
else if(dynamic_cast<ir::reshape_inst*>(ins)) {
ir::value* in = ins->get_operand(0);
distributed_tile *in_tile = (distributed_tile*)tmap_.at(in);
result->for_each([&](indices_t out_idx){
indices_t in_idx;
for(size_t k = 0; k < shapes.size(); k++){
if(shapes[k]->get_value() > 1)
in_idx.push_back(out_idx[k]);
}
result->set_value(out_idx, in_tile->get_value(in_idx));
});
}
// splat
else if(dynamic_cast<ir::splat_inst*>(ins)) {
result->for_each([&](indices_t idx) {
set_mask_insert_pt(idx);
result->set_value(idx, llvm_value(ins->get_operand(0), builder));
});
}
// broadcast
else if(dynamic_cast<ir::broadcast_inst*>(ins)) {
ir::value* in = ins->get_operand(0);
const auto& in_shapes = in->get_type()->get_tile_shapes();
distributed_tile *in_tile = (distributed_tile*)tmap_.at(in);
result->for_each([&](indices_t out_idx){
indices_t in_idx = out_idx;
for(size_t k = 0; k < in_idx.size(); k++){
if(in_shapes[k]->get_value() == 1)
in_idx[k] = builder.getInt32(0);
}
result->set_value(out_idx, in_tile->get_value(in_idx));
});
}
// vectorize
else if(dynamic_cast<ir::vectorize_inst*>(ins)) {
distributed_tile* in = (distributed_tile*)tmap_.at(ins->get_operand(0));
unsigned vector_size = result->axis(0).contiguous;
std::map<unsigned, Value*> packets;
in->for_each([&](indices_t idx){
unsigned linear = in->get_linear_index(idx);
unsigned id = linear / vector_size;
if(linear % vector_size == 0)
packets[id] = result->get_value(idx);
packets[id] = builder.CreateInsertElement(packets.at(id), in->get_value(idx), linear % vector_size);
});
result->for_each([&](indices_t idx){
unsigned linear = in->get_linear_index(idx);
unsigned id = linear / vector_size;
if(linear % vector_size == 0)
result->set_value(idx, packets[id]);
});
}
// copy to shared
else if(dynamic_cast<ir::copy_to_shared_inst*>(ins)) {
distributed_tile* in = (distributed_tile*)tmap_.at(ins->get_operand(0));
in->for_each([&](indices_t idx){
ti->set_value(idx, in->get_value(idx));
});
}
// trans
else if(dynamic_cast<ir::trans_inst*>(ins)) {
distributed_tile* in = (distributed_tile*)tmap_.at(ins->get_operand(0));
in->for_each([&](indices_t idx){
indices_t out_idx = idx;
std::rotate(out_idx.begin(), out_idx.begin() + 1, out_idx.end());
ti->set_value(out_idx, in->get_value(idx));
});
}
else if(buffer_info_->is_shared(ins))
return;
// dot
else if(auto dot = dynamic_cast<ir::dot_inst*>(ins)) {
ir::value *A = ins->get_operand(0);
ir::value *B = ins->get_operand(1);
ir::value *C = ins->get_operand(2);
bool AT = dot->is_a_trans();
bool BT = dot->is_b_trans();
distributed_tile *TC = (distributed_tile*)tmap_.at(C);
Type *c_ty = llvm_type(C->get_type()->get_scalar_ty(), ctx);
Function *f_mul_add = Intrinsic::getDeclaration(module, Intrinsic::fmuladd, {c_ty});
size_t red_axis = dot->is_a_trans() ? 0 : 1;
unsigned NK = A->get_type()->get_tile_shapes()[red_axis]->get_value();
if(NK != 1)
{
shared_tile *TA = (shared_tile*)tmap_.at(A);
shared_tile *TB = (shared_tile*)tmap_.at(B);
if(params_->get_fragment(ins, 0) == tune::STRIDED_SCAN)
{
TA->set_vector_size(TC->axis(0).contiguous);
TB->set_vector_size(TC->axis(1).contiguous);
result->for_each([&](indices_t idx){
Value *res = TC->get_value(idx);
for(unsigned K = 0; K < NK; ++K){
indices_t a_idx = {idx[0], builder.getInt32(K)};
indices_t b_idx = {builder.getInt32(K), idx[1]};
if(AT)
std::swap(a_idx[0], a_idx[1]);
if(BT)
std::swap(b_idx[0], b_idx[1]);
Value *a = TA->get_value(a_idx);
Value *b = TB->get_value(b_idx);
if(a->getType() != c_ty)
a = builder.CreateFPCast(a, c_ty);
if(b->getType() != c_ty)
b = builder.CreateFPCast(b, c_ty);
res = builder.CreateCall(f_mul_add, {a, b, res});
}
result->set_value(idx, res);
});
}
else
{
TA->set_vector_size(4*pack_size_0_);
TB->set_vector_size(4*pack_size_1_);
TA->set_return_mode(true);
TB->set_return_mode(true);
std::vector<Value *> fc;
result->for_each([&](indices_t idx){
fc.push_back(result->get_value(idx));
});
Type *fp32_ty = builder.getFloatTy();
Type *fp16x2_ty = VectorType::get(builder.getHalfTy(), 2);
Type *fp32_pack8_ty = StructType::get(ctx, {fp32_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty});
FunctionType *mma_ty = FunctionType::get(fp32_pack8_ty, {fp16x2_ty, fp16x2_ty, fp16x2_ty, fp16x2_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty, fp32_ty}, false);
Value *offset_a_i = offset_a_i_;
Value *offset_a_k = offset_a_k_;
Value *offset_b_j = offset_b_j_;
Value *offset_b_k = offset_b_k_;
Value* u_thread_id = tgt_->get_local_id(builder.GetInsertBlock()->getModule(), builder, 0);
if(dot->is_a_trans()){
offset_a_i = builder.CreateAdd(offset_a_i, builder.CreateURem(u_thread_id, builder.getInt32(4)));
offset_a_k = builder.getInt32(0);
}
if(!dot->is_b_trans()){
offset_b_j = builder.CreateAdd(offset_b_j, builder.CreateURem(u_thread_id, builder.getInt32(4)));
offset_b_k = builder.getInt32(0);
}
std::string op_a = dot->is_a_trans() ? "row" : "col";
std::string op_b = dot->is_b_trans() ? "row" : "col";
InlineAsm *mma_fn = InlineAsm::get(mma_ty, " mma.sync.aligned.m8n8k4." + op_a + "." + op_b + ".f32.f16.f16.f32 "
"{$0, $1, $2, $3, $4, $5, $6, $7}, "
"{$8, $9}, "
"{$10, $11}, "
"{$0, $1, $2, $3, $4, $5, $6, $7};", "=f,=f,=f,=f,=f,=f,=f,=f,r,r,r,r,0,1,2,3,4,5,6,7", false);
unsigned fpw_0 = params_->get_param(dot, "fpw.d0")->get_value();
unsigned fpw_1 = params_->get_param(dot, "fpw.d1")->get_value();
unsigned wts_0 = fpw_0 * 8;
unsigned wts_1 = fpw_1 * 8;
unsigned wpt_0 = params_->get_param(dot, "wpt.d0")->get_value();
unsigned wpt_1 = params_->get_param(dot, "wpt.d1")->get_value();
unsigned stride_rep_i = wpt_0 * wts_0;
unsigned stride_rep_j = wpt_1 * wts_1;
unsigned num_rep_i = shapes[0]->get_value() / stride_rep_i;
unsigned ld_fc = num_rep_i * 2;
for(unsigned pack_i = 0; pack_i < num_packs_0_; pack_i++)
for(unsigned pack_j = 0; pack_j < num_packs_1_; pack_j++){
for(unsigned K = 0; K < NK; K += 4){
Value *_K = builder.getInt32(K);
Value *current_offset_a_i = builder.CreateAdd(offset_a_i, builder.getInt32(pack_i*stride_rep_i*pack_size_0_));
Value *current_offset_b_i = builder.CreateAdd(offset_b_j, builder.getInt32(pack_j*stride_rep_j*pack_size_1_));
indices_t idx_a = {current_offset_a_i, builder.CreateAdd(offset_a_k, _K)};
indices_t idx_b = {current_offset_b_i, builder.CreateAdd(offset_b_k, _K)};
if(dot->is_a_trans())
std::swap(idx_a[0], idx_a[1]);
if(!dot->is_b_trans())
std::swap(idx_b[0], idx_b[1]);
Value *ha = TA->get_value(idx_a);
Value *hb = TB->get_value(idx_b);
for(unsigned ii = 0; ii < pack_size_0_; ii++)
for(unsigned jj = 0; jj < pack_size_1_; jj++){
Value *ha0 = builder.CreateExtractElement(ha, builder.getInt32(ii*pack_size_0_ + 0));
Value *ha1 = builder.CreateExtractElement(ha, builder.getInt32(ii*pack_size_0_ + 1));
Value *hb0 = builder.CreateExtractElement(hb, builder.getInt32(jj*pack_size_0_ + 0));
Value *hb1 = builder.CreateExtractElement(hb, builder.getInt32(jj*pack_size_0_ + 1));
std::vector<size_t> idx = {
(pack_i*2*pack_size_0_ + ii*2 + 0) + (pack_j*4*pack_size_1_ + jj*4 + 0)*ld_fc,
(pack_i*2*pack_size_0_ + ii*2 + 0) + (pack_j*4*pack_size_1_ + jj*4 + 1)*ld_fc,
(pack_i*2*pack_size_0_ + ii*2 + 1) + (pack_j*4*pack_size_1_ + jj*4 + 0)*ld_fc,
(pack_i*2*pack_size_0_ + ii*2 + 1) + (pack_j*4*pack_size_1_ + jj*4 + 1)*ld_fc,
(pack_i*2*pack_size_0_ + ii*2 + 0) + (pack_j*4*pack_size_1_ + jj*4 + 2)*ld_fc,
(pack_i*2*pack_size_0_ + ii*2 + 0) + (pack_j*4*pack_size_1_ + jj*4 + 3)*ld_fc,
(pack_i*2*pack_size_0_ + ii*2 + 1) + (pack_j*4*pack_size_1_ + jj*4 + 2)*ld_fc,
(pack_i*2*pack_size_0_ + ii*2 + 1) + (pack_j*4*pack_size_1_ + jj*4 + 3)*ld_fc
};
Value *nc = builder.CreateCall(mma_fn, {ha0, ha1, hb0, hb1, fc[idx[0]], fc[idx[1]], fc[idx[2]], fc[idx[3]], fc[idx[4]], fc[idx[5]], fc[idx[6]], fc[idx[7]]});
fc[idx[0]] = builder.CreateExtractValue(nc, {0});
fc[idx[1]] = builder.CreateExtractValue(nc, {1});
fc[idx[2]] = builder.CreateExtractValue(nc, {2});
fc[idx[3]] = builder.CreateExtractValue(nc, {3});
fc[idx[4]] = builder.CreateExtractValue(nc, {4});
fc[idx[5]] = builder.CreateExtractValue(nc, {5});
fc[idx[6]] = builder.CreateExtractValue(nc, {6});
fc[idx[7]] = builder.CreateExtractValue(nc, {7});
}
}
}
// write back
unsigned i = 0;
result->for_each([&](indices_t idx){
result->set_value(idx, fc[i++]);
});
TA->set_return_mode(false);
TB->set_return_mode(false);
}
}
else
{
distributed_tile *TA = (distributed_tile*)tmap_.at(A);
distributed_tile *TB = (distributed_tile*)tmap_.at(B);
result->for_each([&](indices_t idx){
Value *res = TC->get_value(idx);
indices_t a_idx = {idx[0], builder.getInt32(0)};
indices_t b_idx = {builder.getInt32(0), idx[1]};
if(AT)
std::swap(a_idx[0], a_idx[1]);
if(BT)
std::swap(b_idx[0], b_idx[1]);
Value *a = TA->get_value(a_idx);
Value *b = TB->get_value(b_idx);
if(a->getType() != c_ty)
a = builder.CreateFPCast(a, c_ty);
if(b->getType() != c_ty)
b = builder.CreateFPCast(b, c_ty);
res = builder.CreateCall(f_mul_add, {a, b, res});
result->set_value(idx, res);
});
}
}
else if(auto *ld = dynamic_cast<ir::load_inst*>(ins)){
ir::value *ptr = ld->get_pointer_operand();
unsigned starting_multiple = axis_info_->get_starting_multiple(ptr);
unsigned max_contiguous = axis_info_->get_max_contiguous(ptr);
unsigned alignment = std::min(starting_multiple, max_contiguous);
unsigned vector_size = std::min<unsigned>(result->axis(0).contiguous, alignment);
// vector_size = result->axis(0).contiguous;
// vector_size = 1;
std::map<unsigned, Value*> packets;
distributed_tile *TP = (distributed_tile*)tmap_.at(ld->get_pointer_operand());
result->for_each([&](indices_t idx){
set_mask_insert_pt(idx);
unsigned linear = result->get_linear_index(idx);
unsigned id = linear / vector_size;
if(linear % vector_size == 0){
Value *ptr = TP->get_value(idx);
ptr= builder.CreateBitCast(ptr, PointerType::get(VectorType::get(result->get_ty(), vector_size),
ptr->getType()->getPointerAddressSpace()));
packets[id] = builder.CreateLoad(ptr);
}
result->set_value(idx, builder.CreateExtractElement(packets.at(id), linear % vector_size));
});
}
// element-wise
else {
result->for_each([&](indices_t idx){
auto value = [&](ir::value *x) {
if(x->get_type()->is_tile_ty())
return tmap_.at(x)->get_value(idx);
else
return llvm_value(x, builder);
};
set_mask_insert_pt(idx);
result->set_value(idx, llvm_inst(ins, value, builder));
});
}
}
if(mask){
builder.SetInsertPoint(block);
if(last_block)
builder.SetInsertPoint(last_block);
}
}
void selection::lower_instruction(ir::instruction *src, IRBuilder<> &builder) {
if(src->has_tile_result_or_op() || (src->get_mask_pred() && src->get_mask_pred()->get_type()->is_tile_ty())) {
lower_tile_instruction(src, builder);
}
else {
Instruction *i = (Instruction*)llvm_value(src, builder);
vmap_[src] = i;
}
}
inline llvm::Attribute llvm_attr(llvm::LLVMContext& ctx, ir::attribute attr) {
switch(attr.get_kind()){
case ir::noalias: return llvm::Attribute::get(ctx, llvm::Attribute::NoAlias);
case ir::readonly: return llvm::Attribute::get(ctx, llvm::Attribute::ReadOnly);
case ir::writeonly: return llvm::Attribute::get(ctx, llvm::Attribute::WriteOnly);
case ir::aligned: return llvm::Attribute::get(ctx, llvm::Attribute::Alignment, attr.get_value());
default: throw std::runtime_error("cannot convert ir::attribute_t to llvm::Attribute");
}
}
ArrayType* selection::llvm_linearized_tile_type(ir::type *ty, LLVMContext &ctx) {
unsigned size = 1;
for(ir::constant_int* shape: ty->get_tile_shapes())
size *= shape->get_value();
return ArrayType::get(llvm_type(ty->get_scalar_ty(), ctx), size);
}
void selection::run(ir::module &src, Module &dst) {
vmap_.clear();
LLVMContext &dst_ctx = dst.getContext();
IRBuilder<> dst_builder(dst_ctx);
for(ir::alloc_const *x: src.allocs()) {
vmap_[x] = llvm_alloc_const(x, &dst, dst_builder);
}
// iterate over functions
for(ir::function *fn: src.get_function_list()) {
// create LLVM function
FunctionType *fn_ty = (FunctionType*)llvm_type(fn->get_fn_type(), dst_ctx);
FunctionType *dst_fn_ty = fn_ty;
if(!tgt_->is_gpu()){
Type *dst_fn_ret_ty = fn_ty->getReturnType();
std::vector<Type*> dst_fn_args_ty;
for(unsigned i = 0; i < fn_ty->getNumParams(); i++)
dst_fn_args_ty.push_back(fn_ty->getParamType(i));
dst_fn_args_ty.push_back(dst_builder.getInt32Ty());
dst_fn_args_ty.push_back(dst_builder.getInt32Ty());
dst_fn_args_ty.push_back(dst_builder.getInt32Ty());
dst_fn_ty = FunctionType::get(dst_fn_ret_ty, dst_fn_args_ty, false);
}
// grid indices
fn->get_fn_type()->get_return_ty();
Function *dst_fn = Function::Create(dst_fn_ty, Function::ExternalLinkage, fn->get_name(), &dst);
// set attributes
for(auto attr_pair: fn->attrs()){
unsigned id = attr_pair.first;
for(ir::attribute attr: attr_pair.second)
if(attr.is_llvm_attr())
dst_fn->addAttribute(id, llvm_attr(dst_ctx, attr));
}
tgt_->set_kernel(dst_builder, dst_ctx, &dst, dst_fn);
// map parameters
for(unsigned i = 0; i < fn->args().size(); i++)
vmap_[fn->args()[i]] = &*(dst_fn->arg_begin() + i);
// create blocks
for(ir::basic_block *block: fn->blocks()) {
BasicBlock *dst_block = BasicBlock::Create(dst_ctx, block->get_name(), dst_fn);
vmap_[block] = dst_block;
}
dst_builder.SetInsertPoint((BasicBlock*)vmap_[fn->blocks()[0]]);
// allocate shared memory
Value *sh_mem_ptr = nullptr;
if(tgt_->is_gpu())
if(unsigned alloc_size = alloc_->get_allocated_size()){
Type *int_8_ty = Type::getInt8Ty(dst_ctx);
ArrayType *array_ty = ArrayType::get(int_8_ty, alloc_size);
Type *ptr_ty = PointerType::get(int_8_ty, 3);
GlobalVariable *sh_mem_array =
new GlobalVariable(dst, array_ty, false, GlobalVariable::ExternalLinkage,
nullptr, "__shared_ptr", nullptr, GlobalVariable::NotThreadLocal, 3);
sh_mem_ptr = dst_builder.CreateBitCast(sh_mem_array, ptr_ty);
}
sh_mem_ptr_ = sh_mem_ptr;
// create grids
init_grids(fn, dst_builder, sh_mem_ptr);
// iterate through block
std::map<ir::basic_block*, BasicBlock*> last_block;
for(ir::basic_block *block: fn->blocks()) {
BasicBlock *parent = (BasicBlock*)vmap_[block];
dst_builder.SetInsertPoint(parent);
for(ir::instruction *i: block->get_inst_list()){
BasicBlock *current = dst_builder.GetInsertBlock();
bool phi_inserted = (dynamic_cast<ir::phi_node*>(i) || dynamic_cast<ir::psi_inst*>(i)) && !current->empty();
if(phi_inserted && current->getFirstNonPHI())
dst_builder.SetInsertPoint(&*current->getFirstNonPHI());
lower_instruction(i, dst_builder);
if(phi_inserted && current->getFirstNonPHI())
dst_builder.SetInsertPoint(current);
last_block[block] = dst_builder.GetInsertBlock();
}
}
// add phi operands
for(ir::basic_block *block: fn->blocks())
for(ir::instruction *inst: block->get_inst_list())
if(auto *phi = dynamic_cast<ir::phi_node*>(inst)){
if(buffer_info_->is_double(phi)) {
PHINode *ptr = (PHINode*)((shared_tile*)tmap_.at(phi))->get_pointer();
PHINode *offset = (PHINode*)((shared_tile*)tmap_.at(phi))->get_offset();
for(unsigned n = 0; n < phi->get_num_incoming(); n++){
ir::basic_block* inc_block = phi->get_incoming_block(n);
ir::value* inc_val = phi->get_incoming_value(n);
ir::instruction* terminator = inc_block->get_inst_list().back();
BasicBlock *llvm_inc_block = last_block.at(inc_block);
shared_tile *inc_shared = (shared_tile*)tmap_.at(inc_val);
bool is_loop_latch = buffer_info_->is_loop_latch(phi, terminator);
if(is_loop_latch){
dst_builder.SetInsertPoint(llvm_inc_block->getTerminator());
Value *next_offset = dst_builder.CreateNeg(offset);
offset->addIncoming(next_offset, llvm_inc_block);
}
else {
offset->addIncoming(dst_builder.getInt32(alloc_->get_num_bytes(phi)/(2*4)), llvm_inc_block);
}
ptr->addIncoming(inc_shared->get_pointer(), llvm_inc_block);
}
}
else {
for(unsigned n = 0; n < phi->get_num_incoming(); n++){
ir::value *inc_val = phi->get_incoming_value(n);
ir::basic_block *inc_block = phi->get_incoming_block(n);
BasicBlock *llvm_inc_block = last_block.at(inc_block);
if(phi->get_type()->is_tile_ty()) {
distributed_tile *phi_tile = (distributed_tile*)tmap_.at(phi);
distributed_tile *inc_tile = (distributed_tile*)tmap_.at(inc_val);
phi_tile->for_each([&](indices_t idx){
PHINode *llvm_phi = (PHINode*)phi_tile->get_value(idx);
Value *llvm_inc_val = inc_tile->get_value(idx);
llvm_phi->addIncoming(llvm_inc_val, llvm_inc_block);
});
}
else {
PHINode *llvm_phi = (PHINode*)llvm_value(phi, dst_builder);
Value *llvm_inc_val = llvm_value(inc_val, dst_builder);
llvm_phi->addIncoming(llvm_inc_val, llvm_inc_block);
}
}
}
}
}
}
}
}