Files
triton/lib/dnn/blocksparse/dot.cpp

158 lines
4.8 KiB
C++

#include "triton/dnn/heuristics.h"
#include "triton/dnn/blocksparse/dot.h"
namespace triton{
namespace dnn{
namespace blocksparse{
size_t dot::num_flops() const {
return 2.*nblocks_*BS_*BS_*N_;
}
std::vector<int64_t> dot::retune_params() const{
return {N_, S_, C_, BS_, nlocks_, op_};
}
std::vector<params_t> dot::search_space() const {
return bsdot_search_space(op_ == FPROP, BS_);
}
params_t dot::heuristics() const {
return bsdot_heuristics(op_ == FPROP, BS_, N_, S_);
}
base * dot::clone() const {
return new dot(*this);
}
dot::dot(int32_t N, int32_t K, int32_t S, int32_t C,
const std::string& ty, int32_t BS, int32_t nlocks, int32_t nblocks, op_t op):
base("bsdot"),
N_(N), K_(K), S_(S), C_(C),
ab_ty_(ty), c_ty_(ty),
BS_(BS), nlocks_(nlocks), nblocks_(nblocks), op_(op){
}
void dot::init_impl(driver::stream *stream, driver::cu_module *module, triton::runtime::launch_information info) {
int32_t TM = info.globals["TM"];
size_t grid_0 = (N_ + TM - 1) / TM;
if(nlocks_ && !locks_){
locks_.reset(triton::driver::buffer::create(stream->context(), grid_0 * nlocks_ * 2 * 4));
((driver::cu_buffer*)locks_.get())->set_zero(stream, grid_0 * nlocks_ * 2 * 4);
}
}
void dot::deinit_impl() {
}
void dot::enqueue_impl(driver::stream *stream, driver::kernel *kernel,
std::vector<driver::buffer *> args, runtime::launch_information info) {
driver::buffer *a = args[0];
driver::buffer *b = args[1];
driver::buffer *c = args[2];
driver::buffer *lut = args[3];
int32_t lda = N_;
int32_t ldc = N_;
kernel->setArg(0, a);
kernel->setArg(1, b);
kernel->setArg(2, c);
kernel->setArg(3, lda);
kernel->setArg(4, ldc);
kernel->setArg(5, N_);
kernel->setArg(6, lut);
kernel->setArg(7, locks_.get());
kernel->setArg(8, nlocks_);
int32_t TM = info.globals["TM"];
size_t grid_0 = (N_ + TM - 1) / TM;
size_t grid_1 = S_;
if(nlocks_)
((driver::cu_buffer*)locks_.get())->set_zero(stream, grid_0 * nlocks_ * 2 * 4);
stream->enqueue(kernel, {grid_0, grid_1, 1}, {info.num_threads, 1, 1});
}
driver::buffer* dot::get_locks() const {
return locks_.get();
}
void dot::triton_c_src(std::ostream &os) const {
std::string usea = (op_ == WGRAD) ? "trans(a)" : "a";
std::string useb = (op_ == FPROP) ? "trans(b)" : "b";
std::string sizea = "TM, TK";
std::string sizeb = (op_ == FPROP) ? "TN, TK" : "TK, TN";
std::string bca0 = ":, newaxis";
std::string bca1 = "newaxis, :";
std::string bcb0 = (op_ == FPROP) ? ":, newaxis" : "newaxis, :";
std::string bcb1 = (op_ == FPROP) ? "newaxis, :" : ":, newaxis";
std::string ldb0 = (op_ == FPROP) ? "" : "*TK";
std::string ldb1 = (op_ == FPROP) ? "*TK" : "" ;
std::string result =
R"(
const tunable int TM = {16, 32, 64, 128};
const tunable int TN = {)" + std::to_string(BS_) + R"(};
const tunable int TK = {)" + std::to_string(BS_) + R"(};
void bsdot(restrict read_only align(16) )" + ab_ty_ + R"( *A,
restrict read_only align(16) )" + ab_ty_ + R"( *B,
)" + c_ty_ + R"(* C,
int lda, int ldc, int N,
int* lut, int* locks, int nlocks) {
int ridx = get_range_id(0);
int ridy = get_range_id(1);
float acc[TM, TN] = 0;
int rxa[TM] = ridx * TM + (0 ... TM);
int ryb[TN] = 0 ... TN;
int rka[TK] = 0 ... TK;
int rkb[TK] = 0 ... TK;
bool checka[TM, TK] = (rxa < N)[:, newaxis];
int offa[)" + sizea + "] = rxa[" + bca0 + "] + rka[" + bca1 + R"(]*lda;
int offb[)" + sizeb + "] = ryb[" + bcb0 + "]" + ldb0 + " + rkb[" + bcb1 + "]" + ldb1 + R"(;
int *header = lut + ridy * 4;
int offset = *(header + 0);
int K = *(header + 1);
int column = *(header + 2);
int lockid = *(header + 3);
int *plut = lut + offset * 2;
for(int k = K; k > 0; k = k - 1)
{
int ak = *(plut + 0);
int bk = *(plut + 1);
)" + ab_ty_ + "* pa[" + sizea + R"(] = A + offa + ak * TK * lda;
)" + ab_ty_ + "* pb[" + sizeb + R"(] = B + offb + bk * TK * TN;
)" + ab_ty_ + " a[" + sizea + R"(] = checka ? *pa : 0;
)" + ab_ty_ + " b[" + sizeb + R"(] = *pb;
acc = dot()" + usea + ", " + useb + R"(, acc);
plut = plut + 2;
}
int rxc[TM] = ridx * TM + (0 ... TM);
int ryc[TN] = column * TN + (0 ... TN);
)" + c_ty_ + R"(" c[TM, TN] = acc;
)" + c_ty_ + R"(* pc[TM, TN] = C + rxc[:, newaxis] + ryc[newaxis, :]*ldc;
bool checkc[TM, TN] = (rxc < N)[:, newaxis];
if(lockid == 0) {
@checkc *pc = c;
}
else {
int *plock = locks + ridx*nlocks + lockid - 1;
int *pcount = plock + get_num_program(0)*nlocks;
while(__atomic_cas(plock, 0, 1));
int count = *pcount;
if(count == 0){
@checkc *pc = c;
}
else{
@checkc *pc = c + *pc;
}
__atomic_exch(pcount, 1);
__atomic_exch(plock, 0);
}
})";
os << result;
}
}
}
}