This PR clarifies which features are supported on P100 via its tests, though Pascal is not officially and fully supported by Triton. ## What this PR does - Skip unsupported tests on P100. - Atomic RMW - `tl.dot()` (perhaps not all patterns, but basically most `tl.dot()` tests do not work on P100). - Add an explicit error if shared memory size >= 64K on P100. - Otherwise it causes `Invalid CUDA argument` error at `cuLaunchKernel()`, but this error is not very straightforward to understand. Instead of this generic CUDA argument error, this PR makes Triton show an error during codegen when `sm < 70`. This check happens in C/C++ so won't add an overhead in Triton's Python runtime. - 3 tests (see below) are currently failing, but these are not marked as skipped because any codegen update in the future can change the kernel size of the other tests. - This change won't affect Triton-MLIR. Hopefully Triton-MLIR's generic `tl.dot()` implementation would support P100. Importantly, Triton passed all the other tests on P100. Though this support is not official, it is great for, for example, PyTorch's TorchDynamo/Inductor, which can use Triton (without `tl.dot()`) for its backend (https://github.com/pytorch/torchdynamo/issues/1591). ### Results on P100 (Google Cloud) ```sh $ pytest test/unit ... ================================================================================== short test summary info ================================================================================== FAILED test/unit/language/test_core.py::test_reduce2d[argmin-float32-shape99-1] - RuntimeError: Device does not support shared memory of 65536bytes FAILED test/unit/language/test_core.py::test_reduce2d[argmax-float32-shape113-1] - RuntimeError: Device does not support shared memory of 65536bytes FAILED test/unit/language/test_core.py::test_permute[float32-shape5-perm5] - RuntimeError: Device does not support shared memory of 67584bytes ================================================================== 3 failed, 3824 passed, 952 skipped in 470.90s (0:07:50) ================================================================== ``` <details><summary> <b>Environment Details (collapsed)</b></summary> <p> ### VM details (Google Cloud) https://cloud.google.com/ ``` # You need a paid account (free trial does not cover GPUs) Google Cloud -> New Project -> Compute-Engine -> VM Instance Machine: GPU: NVIDIA Tesla P100 x 1 CPU: 2 vCPUs, 7.5GB memory Boot disk: OS: Ubuntu 18.04 LTS Disk: 40GB (cannot build Triton on the default 10GB disk) - When I tried, about $1.2 per hour. - US instances were full when I tried. I used Asia or Australia. - Needed a paid account (GPU is not covered by free trial) - Needed quota request for any GPU instance (by default, no GPU instance is allowed). Needed to wait an hour for approval ``` ### Reproducer ```sh ## 1. Install CUDA and a driver # Update the apt key (https://developer.nvidia.com/blog/updating-the-cuda-linux-gpg-repository-key/) sudo apt-key del 7fa2af80 wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-keyring_1.0-1_all.deb # Download CUDA as instructed wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /" sudo apt-get update sudo apt-get -y install cuda # Are you using P100? nvidia-smi | grep "Tesla P100" ## 2. Setup the build environment sudo apt update sudo apt install -y build-essential wget git libz-dev wget https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh bash Anaconda3-2022.05-Linux-x86_64.sh -b -p $(pwd)/anaconda3 eval "$($(pwd)/anaconda3/bin/conda shell.bash hook)" conda create -y --name triton_base conda activate triton_base conda install -y cmake setuptools ## 3. Build Triton git clone https://github.com/openai/triton.git cd triton/python pip3 install -e '.[tests]' ## 4. Test pytest test/unit ``` ### Environment ```sh $ nvidia-smi +-----------------------------------------------------------------------------+ | NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla P100-PCIE... On | 00000000:00:04.0 Off | 0 | | N/A 36C P0 25W / 250W | 0MiB / 16384MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ ``` </p></details>
100 lines
5.0 KiB
Python
100 lines
5.0 KiB
Python
import itertools
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
import triton
|
|
import triton._C.libtriton.triton as _triton
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, NWARP, NSTAGE, M, N, K, AT, BT, DTYPE",
|
|
itertools.chain(
|
|
*[
|
|
[
|
|
# 1 warp
|
|
(16, 16, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
(32, 16, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
(16, 32, 16, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
(16, 16, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
(32, 16, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
(16, 32, 32, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
(16, 16, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
(64, 16, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
(16, 64, 64, 1, 1, 2, None, None, None, AT, BT, DTYPE),
|
|
# 2 warp
|
|
(64, 32, 64, 1, 2, 2, None, None, None, AT, BT, DTYPE),
|
|
(32, 64, 64, 1, 2, 2, None, None, None, AT, BT, DTYPE),
|
|
(64, 32, 16, 1, 2, 2, None, None, None, AT, BT, DTYPE),
|
|
(32, 64, 16, 1, 2, 2, None, None, None, AT, BT, DTYPE),
|
|
(128, 32, 32, 1, 2, 2, None, None, None, AT, BT, DTYPE),
|
|
(32, 128, 32, 1, 2, 2, None, None, None, AT, BT, DTYPE),
|
|
# 4 warp
|
|
(128, 64, 16, 1, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
(64, 128, 16, 1, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
(128, 32, 32, 1, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
(32, 128, 32, 1, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
(128, 32, 64, 1, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
(32, 128, 64, 1, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
# 8 warp
|
|
(128, 256, 16, 1, 8, 2, None, None, None, AT, BT, DTYPE),
|
|
(256, 128, 16, 1, 8, 2, None, None, None, AT, BT, DTYPE),
|
|
(256, 128, 32, 1, 8, 2, None, None, None, AT, BT, DTYPE),
|
|
# split-k
|
|
(64, 64, 16, 2, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
(64, 64, 16, 4, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
(64, 64, 16, 8, 4, 2, None, None, None, AT, BT, DTYPE),
|
|
# variable input
|
|
(128, 128, 32, 1, 4, 2, 1024, 1024, 1024, AT, BT, DTYPE),
|
|
(128, 128, 32, 1, 4, 2, 384, 128, 640, AT, BT, DTYPE),
|
|
(128, 128, 32, 1, 4, 2, 107, 233, 256, AT, BT, DTYPE),
|
|
(128, 128, 32, 1, 4, 2, 107, 233, 311, AT, BT, DTYPE),
|
|
] for DTYPE in ["float16", "bfloat16", "float32"] for AT in [False, True] for BT in [False, True]
|
|
],
|
|
# n-stage
|
|
*[
|
|
[
|
|
(16, 16, 16, 1, 1, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
|
|
(64, 32, 64, 1, 2, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
|
|
(128, 64, 16, 1, 4, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
|
|
(256, 128, 32, 1, 8, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
|
|
(128, 128, 32, 1, 4, STAGES, 384, 128, 640, AT, BT, DTYPE),
|
|
# split-k
|
|
(64, 64, 16, 8, 4, STAGES, 1024, 1024, 1024, AT, BT, DTYPE),
|
|
(64, 64, 16, 8, 4, STAGES, 1024, 1024, 32, AT, BT, DTYPE),
|
|
] for DTYPE in ["float16", "bfloat16", "float32"] for AT in [False, True] for BT in [False, True] for STAGES in [2, 3, 4]
|
|
]
|
|
),
|
|
)
|
|
def test_op(BLOCK_M, BLOCK_N, BLOCK_K, SPLIT_K, NWARP, NSTAGE, M, N, K, AT, BT, DTYPE):
|
|
cc = _triton.runtime.cc(_triton.runtime.backend.CUDA, torch.cuda.current_device())
|
|
if cc < 70:
|
|
pytest.skip("Only test tl.dot() on devices with sm >= 70")
|
|
if cc < 80 and DTYPE == "bfloat16":
|
|
pytest.skip("Only test bfloat16 on devices with sm >= 80")
|
|
if DTYPE == "bfloat16" and SPLIT_K != 1:
|
|
pytest.skip("bfloat16 matmuls don't allow split_k for now")
|
|
torch.manual_seed(0)
|
|
# nuke kernel decorators -- will set meta-parameters manually
|
|
kwargs = {'BLOCK_M': BLOCK_M, 'BLOCK_N': BLOCK_N, 'BLOCK_K': BLOCK_K, 'SPLIT_K': SPLIT_K}
|
|
pre_hook = None if SPLIT_K == 1 else lambda nargs: nargs['C'].zero_()
|
|
configs = [triton.Config(kwargs=kwargs, num_warps=NWARP, num_stages=NSTAGE, pre_hook=pre_hook)]
|
|
kernel = triton.ops._matmul.kernel
|
|
kernel.configs = configs
|
|
# kernel.run = kernel.run.run.run
|
|
|
|
# get matrix shape
|
|
M = BLOCK_M if M is None else M
|
|
N = BLOCK_N if N is None else N
|
|
K = BLOCK_K * SPLIT_K if K is None else K
|
|
# allocate/transpose inputs
|
|
DTYPE = {"float16": torch.float16, "bfloat16": torch.bfloat16, "float32": torch.float32}[DTYPE]
|
|
a = .1 * torch.randn((K, M) if AT else (M, K), device="cuda", dtype=DTYPE)
|
|
b = .1 * torch.randn((N, K) if BT else (K, N), device="cuda", dtype=DTYPE)
|
|
a = a.t() if AT else a
|
|
b = b.t() if BT else b
|
|
# run test
|
|
th_c = torch.matmul(a, b)
|
|
tt_c = triton.testing.catch_oor(lambda: triton.ops.matmul(a, b), pytest)
|
|
triton.testing.assert_almost_equal(th_c, tt_c)
|