* Simplified `triton.kernel` API to achieve lower latency: > .data_ptr() must now be passed as kernel argument. No more implicit conversion from torch.tensor > compilation options are now constant attributes, i.e., opt.d('VAR') becomes opt.VAR > torch.device must now be passed explicitly to triton.kernel (no longer inferred from torch.tensor arguments) * C++ tests moved to `python/tests/` * C++ tutorial created in `tutorials/` * Python tutorial created in python/tutorials/ * Version changed to 1.0alpha * No longer copying C++ headers into the Python package * added python/triton/ops/ package for pre-written Triton ops
97 lines
3.2 KiB
C
97 lines
3.2 KiB
C
#define STM 8
|
|
#define STN 8
|
|
|
|
__global__ void matmul(TYPE * A __noalias __readonly __aligned(16),
|
|
TYPE * B __noalias __readonly __aligned(16),
|
|
TYPE * C __noalias __aligned(16),
|
|
float alpha,
|
|
int M,
|
|
int N,
|
|
int K __multipleof(16),
|
|
int lda __multipleof(LDA_POW2_DIV),
|
|
int ldb __multipleof(LDB_POW2_DIV),
|
|
int ldc __multipleof(LDC_POW2_DIV),
|
|
int* locks) {
|
|
// prologue
|
|
int pid = get_program_id(0);
|
|
int pidz = get_program_id(2);
|
|
int gridm = (M + TM - 1) / TM;
|
|
int gridn = (N + TN - 1) / TN;
|
|
|
|
// swizzle for better L2 performance
|
|
int width = STM*gridn;
|
|
int stm = pid / width;
|
|
int RSTM = min(gridm - stm*STM, STM);
|
|
int stn = (pid % width) / (RSTM*STN);
|
|
int RSTN = min(gridn - stn*STN, STN);
|
|
int laneid = pid % (RSTM * RSTN);
|
|
int lanem = laneid / RSTN;
|
|
int lanen = laneid % RSTN;
|
|
int pidm = stm*STM + lanem;
|
|
int pidn = stn*STN + lanen;
|
|
int rm[TM] = pidm * TM + 0 ... TM;
|
|
int rn[TN] = pidn * TN + 0 ... TN;
|
|
|
|
// split-k for better parrallelism
|
|
K = K / TZ;
|
|
int rk[TK] = 0 ... TK;
|
|
// pointers to operands
|
|
int offa[TM, TK] = (pidz*K + rk[newaxis, :]) * STRIDE_AK + rm[:, newaxis] * STRIDE_AM;
|
|
int offb[TK, TN] = (pidz*K + rk[:, newaxis]) * STRIDE_BK + rn[newaxis, :] * STRIDE_BN;
|
|
TYPE* pa[TM, TK] = A + offa;
|
|
TYPE* pb[TK, TN] = B + offb;
|
|
|
|
// prefetches operands
|
|
bool checka[TM, TK] = rk[newaxis, :] < K;
|
|
bool checkb[TK, TN] = rk[:, newaxis] < K;
|
|
TYPE a[TM, TK] = checka ? *pa : 0;
|
|
TYPE b[TK, TN] = checkb ? *pb : 0;
|
|
pa += TK * STRIDE_AK;
|
|
pb += TK * STRIDE_BK;
|
|
|
|
// reduction loop
|
|
float acc[TM, TN] = 0;
|
|
for(int k = K; k > 0; k -= TK){
|
|
#if (IS_TK_DIV_K==1)
|
|
bool checkk[TK] = k > TK;
|
|
#else
|
|
bool checkk[TK] = rk < k - TK;
|
|
#endif
|
|
bool checka[TM, TK] = checkk[newaxis, :];
|
|
bool checkb[TK, TN] = checkk[:, newaxis];
|
|
acc += a @ b;
|
|
#if (IS_TK_DIV_K==1)
|
|
a = *?(checka)pa;
|
|
b = *?(checkb)pb;
|
|
#else
|
|
a = checka ? *pa : 0;
|
|
b = checkb ? *pb : 0;
|
|
#endif
|
|
pa += TK * STRIDE_AK;
|
|
pb += TK * STRIDE_BK;
|
|
}
|
|
acc = acc * alpha;
|
|
TYPE c[TM, TN] = acc;
|
|
|
|
// epilogue
|
|
int rcm[TM] = pidm * TM + 0 ... TM;
|
|
int rcn[TN] = pidn * TN + 0 ... TN;
|
|
int offc[TM, TN] = rcm[:, newaxis] * ldc + rcn[newaxis, :];
|
|
TYPE* pc[TM, TN] = C + offc;
|
|
bool checkc[TM, TN] = rcm[:, newaxis] < M && rcn[newaxis, :] < N;
|
|
#if (TZ==1)
|
|
*?(checkc) pc = c;
|
|
#else
|
|
// accumulate partial result using spin-locks
|
|
int *plock = locks + rid;
|
|
int *pcount = plock + get_num_programs(0) * get_num_programs(1);
|
|
for(int repeat = 1; repeat == 1; repeat = atomic_cas(plock, 0, 1));
|
|
int count = *pcount;
|
|
if(count == 0)
|
|
*?(checkc) pc = c;
|
|
else
|
|
*?(checkc) pc = c + *?(checkc)pc;
|
|
atomic_xchg(pcount, (count + 1) % TZ);
|
|
atomic_xchg(plock, 0);
|
|
#endif
|
|
} |