Files
triton/tutorials/01-matmul.cc
Philippe Tillet 79d098450f [PYTHON][TESTS][DOC] Various improvement of the API and code quality:
* Simplified `triton.kernel` API to achieve lower latency:
  > .data_ptr() must now be passed as kernel argument. No more implicit
conversion from torch.tensor
  > compilation options are now constant attributes, i.e., opt.d('VAR')
becomes opt.VAR
  > torch.device must now be passed explicitly to triton.kernel (no
longer inferred from torch.tensor arguments)
* C++ tests moved to `python/tests/`
* C++ tutorial created in `tutorials/`
* Python tutorial created in python/tutorials/
* Version changed to 1.0alpha
* No longer copying C++ headers into the Python package
* added python/triton/ops/ package for pre-written Triton ops
2021-01-29 17:27:16 -05:00

246 lines
8.0 KiB
C++

#include "triton/driver/backend.h"
#include "triton/driver/stream.h"
#include <iomanip>
#include <cstring>
#include <sstream>
#include <cstdio>
#include <tuple>
#include "triton/driver/backend.h"
#include "triton/driver/stream.h"
#include "triton/tools/bench.hpp"
#include "triton/external/half.hpp"
#include "triton/runtime/function.h"
#include <iomanip>
#include <cmath>
#include "triton/runtime/function.h"
namespace drv = triton::driver;
namespace rt = triton::runtime;
namespace src {
const char *dot =
R"(
#define STM 8
#define STN 8
__global__ void dot(TYPE * A __noalias __readonly __aligned(16),
TYPE * B __noalias __readonly __aligned(16),
TYPE * C __noalias __aligned(16),
float alpha,
int M __retune,
int N __retune,
int K __retune __multipleof(16),
int lda __multipleof(8),
int ldb __multipleof(8),
int ldc __multipleof(8),
int* locks) {
// prologue
int pid = get_program_id(0);
int pidz = get_program_id(2);
int gridm = (M + TM - 1) / TM;
int gridn = (N + TN - 1) / TN;
int width = STM*gridn;
int stm = pid / width;
int RSTM = min(gridm - stm*STM, STM);
int stn = (pid % width) / (RSTM*STN);
int RSTN = min(gridn - stn*STN, STN);
int laneid = pid % (RSTM * RSTN);
int lanem = laneid / RSTN;
int lanen = laneid % RSTN;
int pidm = stm*STM + lanem;
int pidn = stn*STN + lanen;
int rm[TM] = pidm * TM + 0 ... TM;
int rn[TN] = pidn * TN + 0 ... TN;
// reduction splitting
K = K / TZ;
int rk[TK] = pidz * K + 0 ... TK;
// pointers to operands
int offa[TM, TK] = rk[newaxis, :] * STRIDE_AK + rm[:, newaxis] * STRIDE_AM;
int offb[TK, TN] = rk[:, newaxis] * STRIDE_BK + rn[newaxis, :] * STRIDE_BN;
TYPE* pa[TM, TK] = A + offa;
TYPE* pb[TK, TN] = B + offb;
// prefetches operands
bool checka[TM, TK] = rk[newaxis, :] < K;
bool checkb[TK, TN] = rk[:, newaxis] < K;
TYPE a[TM, TK] = checka ? *pa : 0;
TYPE b[TK, TN] = checkb ? *pb : 0;
pa += TK * STRIDE_AK;
pb += TK * STRIDE_BK;
// reduction loop
float acc[TM, TN] = 0;
for(int k = K; k > 0; k -= TK){
bool checka[TM, TK] = k > TK;
bool checkb[TK, TN] = k > TK;
acc += a @ b;
a = *?(checka)pa;
b = *?(checkb)pb;
pa += TK * STRIDE_AK;
pb += TK * STRIDE_BK;
}
acc = acc * alpha;
TYPE c[TM, TN] = acc;
// epilogue
int rcm[TM] = pidm * TM + 0 ... TM;
int rcn[TN] = pidn * TN + 0 ... TN;
int offc[TM, TN] = rcm[:, newaxis] * ldc + rcn[newaxis, :];
TYPE* pc[TM, TN] = C + offc;
bool checkc[TM, TN] = rcm[:, newaxis] < M &&
rcn[newaxis, :] < N;
#if (TZ==1)
*?(checkc) pc = c;
#else
// accumulate partial result using spin-locks
int *plock = locks + rid;
int *pcount = plock + get_num_programs(0) * get_num_programs(1);
for(int repeat = 1; repeat == 1; repeat = atomic_cas(plock, 0, 1));
int count = *pcount;
if(count == 0)
*?(checkc) pc = c;
else
*?(checkc) pc = c + *?(checkc)pc;
atomic_xchg(pcount, (count + 1) % TZ);
atomic_xchg(plock, 0);
#endif
}
)";
}
enum dtype_t {
FLOAT,
HALF,
DOUBLE
};
template<class T>
struct to_string;
template<> struct to_string<half_float::half>{
static constexpr const char* value = "half";
};
template<> struct to_string<float>{
static constexpr const char* value = "float";
};
template<> struct to_string<double>{
static constexpr const char* value = "double";
};
template<class T>
void triton_dot(drv::context* context, drv::stream* stream, bool AT, bool BT,
int32_t M, int32_t N, int32_t K,
const std::vector<int>& a_order, const std::vector<int>& b_order,
std::vector<double>& bench, bool &test){
std::string ty = to_string<T>::value;
size_t dt_nbytes = sizeof(T);
drv::device* device = context->device();
int32_t lda = (AT ^ a_order[0]==1) ? K : M;
int32_t ldb = (BT ^ b_order[0]==1) ? N : K;
int32_t ldc = N;
std::vector<std::string> sa = { "1", "lda" };
std::vector<std::string> sb = { "1", "ldb" };
// inputs
auto dc = std::shared_ptr<drv::buffer>(drv::buffer::create(context, M*N*dt_nbytes));
auto da = std::shared_ptr<drv::buffer>(drv::buffer::create(context, M*K*dt_nbytes));
auto db = std::shared_ptr<drv::buffer>(drv::buffer::create(context, K*N*dt_nbytes));
auto dlocks = std::shared_ptr<drv::buffer>(drv::buffer::create(context, 1024*1024*2*4));
// initialize buffers
std::vector<T> hc(M*N);
std::vector<T> ha(M*K);
std::vector<T> hb(K*N);
for(size_t i = 0; i < ha.size(); i++)
ha[i] = (float)rand()/RAND_MAX;
for(size_t i = 0; i < hb.size(); i++)
hb[i] = (float)rand()/RAND_MAX;
// copy buffer
stream->write(&*da, true, 0, ha);
stream->write(&*db, true, 0, hb);
// macros
rt::options_space_t opts;
// A access patterns
opts.defines.push_back({"STRIDE_AK", {AT? sa[a_order[0]] : sa[a_order[1]] }});
opts.defines.push_back({"STRIDE_AM", {AT? sa[a_order[1]] : sa[a_order[0]] }});
// B access patterns
opts.defines.push_back({"STRIDE_BK", {BT? sb[b_order[1]] : sb[b_order[0]] }});
opts.defines.push_back({"STRIDE_BN", {BT? sb[b_order[0]] : sb[b_order[1]] }});
// data-type
opts.defines.push_back({"TYPE", {ty}});
// tile sizes
opts.defines.push_back({"TM", {"128"}});
opts.defines.push_back({"TN", {"128"}});
opts.defines.push_back({"TK", {"32"}});
opts.defines.push_back({"TZ", {"1"}});
opts.num_warps = {4};
// arguments
std::stringstream oss;
rt::add_arg(oss, *da->cu());
rt::add_arg(oss, *db->cu());
rt::add_arg(oss, *dc->cu());
rt::add_arg(oss, (float)1);
rt::add_arg(oss, M);
rt::add_arg(oss, N);
rt::add_arg(oss, K);
rt::add_arg(oss, lda);
rt::add_arg(oss, ldb);
rt::add_arg(oss, ldc);
rt::add_arg(oss, *dlocks->cu());
// kernel
rt::function function(src::dot, opts, device);
// grid
auto ceil = [](size_t x, size_t y) { return (x + y - 1) / y; };
auto grid = [ceil, M, N](const rt::options_t& x) {
return rt::grid_t{ceil(M, x.D<int>("TM"))*
ceil(N, x.D<int>("TN")),
(size_t)x.D<int>("TZ")};
};
// metrics
auto tflops = [&](double nanosec) { return 2.*M*N*K / nanosec * 1e-3; };
double triton_ns = triton::tools::bench([&]() { function((void**)oss.str().data(), oss.str().size(), grid, stream);}, stream);
bench.push_back(tflops(triton_ns));
}
std::vector<double> bench_dot(drv::context* context, drv::stream* stream,
dtype_t dtype, bool AT, bool BT,
int32_t M, int32_t N, int32_t K,
const std::vector<int>& a_order, const std::vector<int>& b_order) {
std::vector<double> bench;
bool test;
switch(dtype){
case HALF: triton_dot<half_float::half>(context, stream, AT, BT, M, N, K, a_order, b_order, bench, test); break;
case FLOAT: triton_dot<float>(context, stream, AT, BT, M, N, K, a_order, b_order, bench, test); break;
case DOUBLE: triton_dot<double>(context, stream, AT, BT, M, N, K, a_order, b_order, bench, test); break;
default: break;
}
return bench;
}
int main() {
// initialize default compute device
auto context = triton::driver::backend::contexts::get_default();
triton::driver::stream* stream = triton::driver::stream::create(context->backend());
// shapes to benchmark
typedef std::tuple<std::vector<int>, bool, bool, int, int, int> config_t;
std::vector<config_t> configs = {
{{1, 0}, false, false, 8192, 8192, 8192}
};
// does the work
std::vector<int> ord;
bool AT, BT;
int32_t M, N, K;
for(const auto& c: configs){
std::tie(ord, AT, BT, M, N, K) = c;
std::cout << "// " << AT << ", " << BT << ", " << M << ", " << N << ", " << K ;
for(auto perf: bench_dot(context, stream, HALF, AT, BT, M, N, K, ord, ord))
std::cout << ", " << perf << std::flush;
std::cout << std::endl;
}
}