Files
triton/master/_sources/getting-started/tutorials/05-layer-norm.rst.txt
2022-04-15 00:42:31 +00:00

371 lines
14 KiB
ReStructuredText

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "getting-started/tutorials/05-layer-norm.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here <sphx_glr_download_getting-started_tutorials_05-layer-norm.py>`
to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_getting-started_tutorials_05-layer-norm.py:
Layer Normalization
====================
.. GENERATED FROM PYTHON SOURCE LINES 5-262
.. image:: /getting-started/tutorials/images/sphx_glr_05-layer-norm_001.png
:alt: 05 layer norm
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
layer-norm-backward:
N Triton Torch Apex
0 1024.0 356.173905 98.303995 307.200008
1 1536.0 396.387087 133.565214 341.333333
2 2048.0 481.882362 160.627450 325.509933
3 2560.0 451.764698 180.175950 321.675394
4 3072.0 511.999982 189.046153 316.429186
5 3584.0 547.872604 206.769233 308.301075
6 4096.0 558.545450 218.939860 298.796351
7 4608.0 491.520008 231.849059 286.507772
8 5120.0 518.481012 240.469672 283.133649
9 5632.0 532.157453 241.371422 288.204696
10 6144.0 542.117638 249.502530 286.322318
11 6656.0 532.479975 253.561895 284.242007
12 7168.0 507.469040 254.109315 277.919225
13 7680.0 486.332448 263.314295 280.547947
14 8192.0 464.794337 263.903346 277.694924
15 8704.0 406.412440 263.093202 280.774186
16 9216.0 418.909088 270.065931 286.507772
17 9728.0 427.604376 281.291575 289.667485
18 10240.0 434.973455 284.115604 288.450695
19 10752.0 423.724151 244.827326 289.291486
20 11264.0 423.061049 242.019694 282.482755
21 11776.0 417.465304 247.915800 287.219500
22 12288.0 414.202242 252.601276 293.737063
23 12800.0 410.146863 252.424003 288.993430
24 13312.0 406.991092 252.759501 289.916513
25 13824.0 404.112047 255.408777 291.031592
26 14336.0 395.475867 251.692749 284.821192
27 14848.0 383.174202 255.816222 287.612590
28 15360.0 378.480483 259.058326 289.129401
29 15872.0 369.832994 260.196726 288.800600
|
.. code-block:: default
import torch
import triton
import triton.language as tl
try:
# This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it
# should not be added to extras_require in setup.py.
import apex
HAS_APEX = True
except ModuleNotFoundError:
HAS_APEX = False
# Forward Pass
@triton.jit
def _layer_norm_fwd_fused(X, Y, W, B, M, V, stride, N, eps,
BLOCK_SIZE: tl.constexpr):
# position of elements processed by this program
row = tl.program_id(0)
cols = tl.arange(0, BLOCK_SIZE)
mask = cols < N
# offset data pointers to start at the row of interest
X += row * stride
Y += row * stride
# load data and cast to float32
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
# compute mean
mean = tl.sum(x, axis=0) / N
# compute std
xmean = tl.where(mask, x - mean, 0.)
var = tl.sum(xmean * xmean, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
xhat = xmean * rstd
# write-back mean/rstd
tl.store(M + row, mean)
tl.store(V + row, rstd)
# multiply by weight and add bias
w = tl.load(W + cols, mask=mask)
b = tl.load(B + cols, mask=mask)
y = xhat * w + b
# write-back
tl.store(Y + cols, y, mask=mask)
# Backward pass (DX + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DW, DB, X, W, B, M, V, Lock, stride, N, eps,
GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
# position of elements processed by this program
row = tl.program_id(0)
cols = tl.arange(0, BLOCK_SIZE_N)
mask = cols < N
# offset data pointers to start at the row of interest
X += row * stride
DY += row * stride
DX += row * stride
# offset locks and weight/bias gradient pointer
# each kernel instance accumulates partial sums for
# DW and DB into one of GROUP_SIZE_M independent buffers
# these buffers stay in the L2, which allow this kernel
# to be fast
lock_id = row % GROUP_SIZE_M
Lock += lock_id
Count = Lock + GROUP_SIZE_M
DW = DW + lock_id * N + cols
DB = DB + lock_id * N + cols
# load data to SRAM
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
w = tl.load(W + cols, mask=mask).to(tl.float32)
mean = tl.load(M + row)
rstd = tl.load(V + row)
# compute dx
xhat = (x - mean) * rstd
wdy = w * dy
xhat = tl.where(mask, xhat, 0.)
wdy = tl.where(mask, wdy, 0.)
mean1 = tl.sum(xhat * wdy, axis=0) / N
mean2 = tl.sum(wdy, axis=0) / N
dx = (wdy - (xhat * mean1 + mean2)) * rstd
# write-back dx
tl.store(DX + cols, dx, mask=mask)
# accumulate partial sums for dw/db
partial_dw = (dy * xhat).to(w.dtype)
partial_db = (dy).to(w.dtype)
while tl.atomic_cas(Lock, 0, 1) == 1:
pass
count = tl.load(Count)
# first store doesn't accumulate
if count == 0:
tl.atomic_xchg(Count, 1)
else:
partial_dw += tl.load(DW, mask=mask)
partial_db += tl.load(DB, mask=mask)
tl.store(DW, partial_dw, mask=mask)
tl.store(DB, partial_db, mask=mask)
# release lock
tl.atomic_xchg(Lock, 0)
# Backward pass (total DW + total DB)
@triton.jit
def _layer_norm_bwd_dwdb(DW, DB, FINAL_DW, FINAL_DB, M, N,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
pid = tl.program_id(0)
cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for i in range(0, M, BLOCK_SIZE_M):
rows = i + tl.arange(0, BLOCK_SIZE_M)
mask = (rows[:, None] < M) & (cols[None, :] < N)
offs = rows[:, None] * N + cols[None, :]
dw += tl.load(DW + offs, mask=mask, other=0.)
db += tl.load(DB + offs, mask=mask, other=0.)
sum_dw = tl.sum(dw, axis=0)
sum_db = tl.sum(db, axis=0)
tl.store(FINAL_DW + cols, sum_dw, mask=cols < N)
tl.store(FINAL_DB + cols, sum_db, mask=cols < N)
class LayerNorm(torch.autograd.Function):
@staticmethod
def forward(ctx, x, normalized_shape, weight, bias, eps):
# allocate output
y = torch.empty_like(x)
# reshape input data into 2D tensor
x_arg = x.reshape(-1, x.shape[-1])
M, N = x_arg.shape
mean = torch.empty((M, ), dtype=torch.float32, device='cuda')
rstd = torch.empty((M, ), dtype=torch.float32, device='cuda')
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_SIZE:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
# enqueue kernel
_layer_norm_fwd_fused[(M,)](x_arg, y, weight, bias, mean, rstd,
x_arg.stride(0), N, eps,
BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
ctx.save_for_backward(x, weight, bias, mean, rstd)
ctx.BLOCK_SIZE = BLOCK_SIZE
ctx.num_warps = num_warps
ctx.eps = eps
return y
@staticmethod
def backward(ctx, dy):
x, w, b, m, v = ctx.saved_tensors
# heuristics for amount of parallel reduction stream for DG/DB
N = w.shape[0]
GROUP_SIZE_M = 64
if N <= 8192: GROUP_SIZE_M = 96
if N <= 4096: GROUP_SIZE_M = 128
if N <= 1024: GROUP_SIZE_M = 256
# allocate output
locks = torch.zeros(2 * GROUP_SIZE_M, dtype=torch.int32, device='cuda')
_dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
_db = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device)
dw = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
db = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device)
dx = torch.empty_like(dy)
# enqueue kernel using forward pass heuristics
# also compute partial sums for DW and DB
x_arg = x.reshape(-1, x.shape[-1])
M, N = x_arg.shape
_layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, _db, x, w, b, m, v, locks,
x_arg.stride(0), N, ctx.eps,
BLOCK_SIZE_N=ctx.BLOCK_SIZE,
GROUP_SIZE_M=GROUP_SIZE_M,
num_warps=ctx.num_warps)
grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])]
# accumulate partial sums in separate kernel
_layer_norm_bwd_dwdb[grid](_dw, _db, dw, db, GROUP_SIZE_M, N,
BLOCK_SIZE_M=32,
BLOCK_SIZE_N=128)
return dx, None, dw, db, None
layer_norm = LayerNorm.apply
def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
# create data
x_shape = (M, N)
w_shape = (x_shape[-1], )
weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
dy = .1 * torch.randn_like(x)
x.requires_grad_(True)
# forward pass
y_tri = layer_norm(x, w_shape, weight, bias, eps)
y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
# backward pass (triton)
y_tri.backward(dy, retain_graph=True)
dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
x.grad, weight.grad, bias.grad = None, None, None
# backward pass (torch)
y_ref.backward(dy, retain_graph=True)
dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
# compare
triton.testing.assert_almost_equal(y_tri, y_ref)
triton.testing.assert_almost_equal(dx_tri, dx_ref)
triton.testing.assert_almost_equal(db_tri, db_ref, decimal=1)
triton.testing.assert_almost_equal(dw_tri, dw_ref, decimal=1)
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['N'],
x_vals=[512 * i for i in range(2, 32)],
line_arg='provider',
line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []),
line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []),
styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
ylabel='GB/s',
plot_name='layer-norm-backward',
args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'}
)
)
def bench_layer_norm(M, N, dtype, provider, mode='backward', eps=1e-5, device='cuda'):
# create data
x_shape = (M, N)
w_shape = (x_shape[-1], )
weight = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
bias = torch.rand(w_shape, dtype=dtype, device='cuda', requires_grad=True)
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device='cuda')
dy = .1 * torch.randn_like(x)
x.requires_grad_(True)
# utility functions
if provider == 'triton':
y_fwd = lambda: layer_norm(x, w_shape, weight, bias, eps)
if provider == 'torch':
y_fwd = lambda: torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)
if provider == 'apex':
apex_layer_norm = apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype)
y_fwd = lambda: apex_layer_norm(x)
# forward pass
if mode == 'forward':
gbps = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6
ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, rep=500)
# backward pass
if mode == 'backward':
gbps = lambda ms: 3 * x.numel() * x.element_size() / ms * 1e-6
y = y_fwd()
ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True),
grad_to_none=[x], rep=500)
return gbps(ms), gbps(max_ms), gbps(min_ms)
bench_layer_norm.run(save_path='.', print_data=True)
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 2 minutes 15.414 seconds)
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: 05-layer-norm.py <05-layer-norm.py>`
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: 05-layer-norm.ipynb <05-layer-norm.ipynb>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_