Files
triton/_sources/getting-started/tutorials/01-vector-add.rst.txt
2021-03-11 11:58:42 -05:00

300 lines
9.9 KiB
ReStructuredText

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "getting-started/tutorials/01-vector-add.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here <sphx_glr_download_getting-started_tutorials_01-vector-add.py>`
to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_getting-started_tutorials_01-vector-add.py:
Vector Addition
=================
In this tutorial, you will write a simple vector addition using Triton and learn about:
- The basic syntax of the Triton programming language
- The best practices for creating PyTorch custom operators using the :code:`triton.kernel` Python API
- The best practices for validating and benchmarking custom ops against native reference implementations
.. GENERATED FROM PYTHON SOURCE LINES 12-51
Compute Kernel
--------------------------
Each compute kernel is declared using the :code:`__global__` attribute, and executed many times in parallel
on different chunks of data (See the `Single Program, Multiple Data <(https://en.wikipedia.org/wiki/SPMD>`_)
programming model for more details).
.. code-block:: C
__global__ void add(float* z, float* x, float* y, int N){
// The `get_program_id(i)` returns the i-th coordinate
// of the program in the overaching SPMD context
// (a.k.a launch grid). This is what allows us to process
// different chunks of data in parallel.
// For those similar with CUDA, `get_program_id({0,1,2})`
// is similar to blockIdx.{x,y,z}
int pid = get_program_id(0);
// In Triton, arrays are first-class citizen. In other words,
// they are primitives data-types and are -- contrary to C and
// CUDA -- not implemented as pointers to contiguous chunks of
// memory.
// In the few lines below, we create an array of `BLOCK` pointers
// whose memory values are, e.g.:
// [z + pid*BLOCK + 0, z + pid*BLOCK + 1, ..., z + pid*BLOCK + BLOCK - 1]
// Note: here BLOCK is expected to be a pre-processor macro defined at compile-time
int offset[BLOCK] = pid * BLOCK + 0 ... BLOCK;
float* pz [BLOCK] = z + offset;
float* px [BLOCK] = x + offset;
float* py [BLOCK] = y + offset;
// Simple element-wise control-flow for load/store operations can
// be achieved using the the ternary operator `cond ? val_true : val_false`
// or the conditional dereferencing operator `*?(cond)ptr
// Here, we make sure that we do not access memory out-of-bounds when we
// write-back `z`
bool check[BLOCK] = offset < N;
*?(check)pz = *?(check)px + *?(check)py;
}
The existence of arrays as a primitive data-type for Triton comes with a number of advantages that are highlighted in the `MAPL'2019 Triton paper <http://www.eecs.harvard.edu/~htk/publication/2019-mapl-tillet-kung-cox.pdf>`_.
.. GENERATED FROM PYTHON SOURCE LINES 53-60
Torch bindings
--------------------------
The only thing that matters when it comes to Triton and Torch is the :code:`triton.kernel` class. This allows you to transform the above C-like function into a callable python object that can be used to modify :code:`torch.tensor` objects. To create a :code:`triton.kernel`, you only need three things:
- :code:`source: string`: the source-code of the kernel you want to create
- :code:`device: torch.device`: the device you want to compile this code for
- :code:`defines: dict`: the set of macros that you want the pre-processor to `#define` for you
.. GENERATED FROM PYTHON SOURCE LINES 60-125
.. code-block:: default
import torch
import triton
# source-code for Triton compute kernel
# here we just copy-paste the above code without the extensive comments.
# you may prefer to store it in a .c file and load it from there instead.
_src = """
__global__ void add(float* z, float* x, float* y, int N){
// program id
int pid = get_program_id(0);
// create arrays of pointers
int offset[BLOCK] = pid * BLOCK + 0 ... BLOCK;
float* pz[BLOCK] = z + offset;
float* px[BLOCK] = x + offset;
float* py[BLOCK] = y + offset;
// bounds checking
bool check[BLOCK] = offset < N;
// write-back
*?(check)pz = *?(check)px + *?(check)py;
}
"""
# This function returns a callable `triton.kernel` object created from the above source code.
# For portability, we maintain a cache of kernels for different `torch.device`
# We compile the kernel with -DBLOCK=1024
def make_add_kernel(device):
cache = make_add_kernel.cache
if device not in cache:
defines = {'BLOCK': 1024}
cache[device] = triton.kernel(_src, device=device, defines=defines)
return cache[device]
make_add_kernel.cache = dict()
# This is a standard torch custom autograd Function;
# The only difference is that we can now use the above kernel in the `forward` and `backward` functions.`
class _add(torch.autograd.Function):
@staticmethod
def forward(ctx, x, y):
# constraints of the op
assert x.dtype == torch.float32
# *allocate output*
z = torch.empty_like(x)
# *create launch grid*:
# this is a function which takes compilation parameters `opt`
# as input and returns a tuple of int (i.e., launch grid) for the kernel.
# triton.cdiv is a shortcut for ceil division:
# triton.cdiv(a, b) = (a + b - 1) // b
N = z.shape[0]
grid = lambda opt: (triton.cdiv(N, opt.BLOCK), )
# *launch kernel*:
# pointer to the data of torch tensors can be retrieved with
# the `.data_ptr()` method
kernel = make_add_kernel(z.device)
kernel(z.data_ptr(), x.data_ptr(), y.data_ptr(), N, grid=grid)
return z
# Just like we standard PyTorch ops We use the :code:`.apply` method to create a callable object for our function
add = _add.apply
.. GENERATED FROM PYTHON SOURCE LINES 126-127
We can now use the above function to compute the sum of two `torch.tensor` objects:
.. GENERATED FROM PYTHON SOURCE LINES 129-133
Unit Test
--------------------------
Of course, the first thing that we should check is that whether kernel is correct. This is pretty easy to test, as shown below:
.. GENERATED FROM PYTHON SOURCE LINES 133-143
.. code-block:: default
torch.manual_seed(0)
x = torch.rand(98432, device='cuda')
y = torch.rand(98432, device='cuda')
za = x + y
zb = add(x, y)
print(za)
print(zb)
print(f'The maximum difference between torch and triton is ' f'{torch.max(torch.abs(za - zb))}')
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
tensor([1.3713, 1.3076, 0.4940, ..., 0.6682, 1.1984, 1.2696], device='cuda:0')
tensor([1.3713, 1.3076, 0.4940, ..., 0.6682, 1.1984, 1.2696], device='cuda:0')
The maximum difference between torch and triton is 0.0
.. GENERATED FROM PYTHON SOURCE LINES 144-145
Seems like we're good to go!
.. GENERATED FROM PYTHON SOURCE LINES 147-152
Benchmarking
--------------------------
We can now benchmark our custom op for vectors of increasing sizes to get a sense of how it does relative to PyTorch.
To make things easier, Triton has a set of built-in utilities that allow us to concisely plot the performance of our custom op.
for different problem sizes.
.. GENERATED FROM PYTHON SOURCE LINES 152-178
.. code-block:: default
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['size'], # argument names to use as an x-axis for the plot
x_vals=[2**i for i in range(12, 28, 1)], # different possible values for `x_name`
x_log=True, # x axis is logarithmic
y_name='provider', # argument name whose value corresponds to a different line in the plot
y_vals=['torch', 'triton'], # possible keys for `y_name`
y_lines=["Torch", "Triton"], # label name for the lines
ylabel="GB/s", # label name for the y-axis
plot_name="vector-add-performance", # name for the plot. Used also as a file name for saving the plot.
args={} # values for function arguments not in `x_names` and `y_name`
)
)
def benchmark(size, provider):
x = torch.rand(size, device='cuda', dtype=torch.float32)
y = torch.rand(size, device='cuda', dtype=torch.float32)
if provider == 'torch':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: x + y)
if provider == 'triton':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: add(x, y))
gbps = lambda ms: 12 * size / ms * 1e-6
return gbps(ms), gbps(max_ms), gbps(min_ms)
.. GENERATED FROM PYTHON SOURCE LINES 179-181
We can now run the decorated function above. Pass `show_plots=True` to see the plots and/or
`save_path='/path/to/results/' to save them to disk along with raw CSV data
.. GENERATED FROM PYTHON SOURCE LINES 181-181
.. code-block:: default
benchmark.run(show_plots=True)
.. image:: /getting-started/tutorials/images/sphx_glr_01-vector-add_001.png
:alt: vector-add-performance
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 5.768 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: 01-vector-add.py <01-vector-add.py>`
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: 01-vector-add.ipynb <01-vector-add.ipynb>`
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_